9 35
From Knot Atlas
Jump to navigationJump to search
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 9 35's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
9_35 is also known as the pretzel knot P(3,3,3). |
Knot presentations
Planar diagram presentation | X1829 X7,14,8,15 X5,16,6,17 X9,18,10,1 X15,6,16,7 X17,10,18,11 X13,2,14,3 X3,12,4,13 X11,4,12,5 |
Gauss code | -1, 7, -8, 9, -3, 5, -2, 1, -4, 6, -9, 8, -7, 2, -5, 3, -6, 4 |
Dowker-Thistlethwaite code | 8 12 16 14 18 4 2 6 10 |
Conway Notation | [3,3,3] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||||
Length is 14, width is 5, Braid index is 5 |
![]() |
![]() [{8, 4}, {3, 7}, {4, 2}, {1, 3}, {9, 12}, {11, 8}, {12, 10}, {6, 9}, {7, 5}, {2, 6}, {5, 11}, {10, 1}] |
[edit Notes on presentations of 9 35]
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
Vassiliev invariants
V2 and V3: | (7, -18) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 9 35. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|