9 34

From Knot Atlas
Jump to navigationJump to search

9 33.gif

9_33

9 35.gif

9_35

9 34.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 9 34's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 34 at Knotilus!


Knot presentations

Planar diagram presentation X6271 X16,8,17,7 X8394 X2,15,3,16 X14,9,15,10 X10,6,11,5 X4,14,5,13 X18,11,1,12 X12,17,13,18
Gauss code 1, -4, 3, -7, 6, -1, 2, -3, 5, -6, 8, -9, 7, -5, 4, -2, 9, -8
Dowker-Thistlethwaite code 6 8 10 16 14 18 4 2 12
Conway Notation [8*20]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif

Length is 9, width is 4,

Braid index is 4

9 34 ML.gif 9 34 AP.gif
[{7, 11}, {10, 2}, {11, 4}, {3, 9}, {5, 10}, {4, 8}, {9, 6}, {1, 5}, {2, 7}, {6, 1}, {8, 3}]

[edit Notes on presentations of 9 34]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 3
Bridge index 3
Super bridge index [math]\displaystyle{ \{4,6\} }[/math]
Nakanishi index 1
Maximal Thurston-Bennequin number [-6][-5]
Hyperbolic Volume 14.3446
A-Polynomial See Data:9 34/A-polynomial

[edit Notes for 9 34's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus [math]\displaystyle{ 1 }[/math]
Topological 4 genus [math]\displaystyle{ 1 }[/math]
Concordance genus [math]\displaystyle{ 3 }[/math]
Rasmussen s-Invariant 0

[edit Notes for 9 34's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ -t^3+6 t^2-16 t+23-16 t^{-1} +6 t^{-2} - t^{-3} }[/math]
Conway polynomial [math]\displaystyle{ -z^6-z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 69, 0 }
Jones polynomial [math]\displaystyle{ q^4-4 q^3+8 q^2-10 q+12-12 q^{-1} +10 q^{-2} -7 q^{-3} +4 q^{-4} - q^{-5} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ -z^6+2 a^2 z^4+z^4 a^{-2} -3 z^4-a^4 z^2+3 a^2 z^2+z^2 a^{-2} -4 z^2+a^2+ a^{-2} -1 }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ 3 a^2 z^8+3 z^8+6 a^3 z^7+14 a z^7+8 z^7 a^{-1} +4 a^4 z^6+5 a^2 z^6+8 z^6 a^{-2} +9 z^6+a^5 z^5-11 a^3 z^5-26 a z^5-10 z^5 a^{-1} +4 z^5 a^{-3} -7 a^4 z^4-19 a^2 z^4-10 z^4 a^{-2} +z^4 a^{-4} -23 z^4-a^5 z^3+5 a^3 z^3+12 a z^3+4 z^3 a^{-1} -2 z^3 a^{-3} +3 a^4 z^2+10 a^2 z^2+4 z^2 a^{-2} +11 z^2-a z-z a^{-1} -a^2- a^{-2} -1 }[/math]
The A2 invariant [math]\displaystyle{ -q^{16}+q^{14}+2 q^{12}-2 q^{10}+2 q^8-q^6-q^4+2 q^2-2+3 q^{-2} -2 q^{-4} + q^{-6} +2 q^{-8} -2 q^{-10} + q^{-12} }[/math]
The G2 invariant [math]\displaystyle{ q^{80}-3 q^{78}+7 q^{76}-13 q^{74}+14 q^{72}-12 q^{70}-q^{68}+27 q^{66}-55 q^{64}+83 q^{62}-84 q^{60}+44 q^{58}+24 q^{56}-112 q^{54}+181 q^{52}-188 q^{50}+127 q^{48}-11 q^{46}-114 q^{44}+205 q^{42}-213 q^{40}+135 q^{38}-7 q^{36}-116 q^{34}+167 q^{32}-131 q^{30}+24 q^{28}+103 q^{26}-178 q^{24}+183 q^{22}-102 q^{20}-37 q^{18}+174 q^{16}-269 q^{14}+272 q^{12}-182 q^{10}+32 q^8+130 q^6-244 q^4+280 q^2-217+85 q^{-2} +58 q^{-4} -170 q^{-6} +191 q^{-8} -117 q^{-10} -6 q^{-12} +123 q^{-14} -165 q^{-16} +125 q^{-18} -16 q^{-20} -113 q^{-22} +195 q^{-24} -206 q^{-26} +141 q^{-28} -26 q^{-30} -88 q^{-32} +159 q^{-34} -165 q^{-36} +126 q^{-38} -55 q^{-40} -10 q^{-42} +48 q^{-44} -68 q^{-46} +60 q^{-48} -38 q^{-50} +18 q^{-52} + q^{-54} -8 q^{-56} +10 q^{-58} -10 q^{-60} +6 q^{-62} -3 q^{-64} + q^{-66} }[/math]

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11n32, K11n119,}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (-1, 0)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ -4 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 8 }[/math] [math]\displaystyle{ \frac{34}{3} }[/math] [math]\displaystyle{ \frac{14}{3} }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ -32 }[/math] [math]\displaystyle{ -\frac{32}{3} }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ -\frac{136}{3} }[/math] [math]\displaystyle{ -\frac{56}{3} }[/math] [math]\displaystyle{ -\frac{1231}{30} }[/math] [math]\displaystyle{ -\frac{338}{15} }[/math] [math]\displaystyle{ -\frac{1742}{45} }[/math] [math]\displaystyle{ \frac{655}{18} }[/math] [math]\displaystyle{ -\frac{271}{30} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]0 is the signature of 9 34. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-5-4-3-2-101234χ
9         11
7        3 -3
5       51 4
3      53  -2
1     75   2
-1    66    0
-3   46     -2
-5  36      3
-7 14       -3
-9 3        3
-111         -1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-1 }[/math] [math]\displaystyle{ i=1 }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6} }[/math] [math]\displaystyle{ {\mathbb Z}^{6} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6} }[/math] [math]\displaystyle{ {\mathbb Z}^{7} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

The Coloured Jones Polynomials