K11n119

From Knot Atlas
Jump to navigationJump to search

K11n118.gif

K11n118

K11n120.gif

K11n120

K11n119.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11n119 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X10,4,11,3 X14,5,15,6 X7,20,8,21 X2,10,3,9 X16,11,17,12 X18,14,19,13 X8,15,9,16 X22,17,1,18 X19,6,20,7 X12,22,13,21
Gauss code 1, -5, 2, -1, 3, 10, -4, -8, 5, -2, 6, -11, 7, -3, 8, -6, 9, -7, -10, 4, 11, -9
Dowker-Thistlethwaite code 4 10 14 -20 2 16 18 8 22 -6 12
A Braid Representative
BraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart0.gif
A Morse Link Presentation K11n119 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number [math]\displaystyle{ \{1,2\} }[/math]
3-genus 3
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11n119/ThurstonBennequinNumber
Hyperbolic Volume 14.3682
A-Polynomial See Data:K11n119/A-polynomial

[edit Notes for K11n119's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [math]\displaystyle{ 3 }[/math]
Rasmussen s-Invariant 0

[edit Notes for K11n119's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ -t^3+6 t^2-16 t+23-16 t^{-1} +6 t^{-2} - t^{-3} }[/math]
Conway polynomial [math]\displaystyle{ -z^6-z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 69, 0 }
Jones polynomial [math]\displaystyle{ -2 q^3+6 q^2-8 q+11-12 q^{-1} +11 q^{-2} -9 q^{-3} +6 q^{-4} -3 q^{-5} + q^{-6} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ -a^2 z^6+a^4 z^4-4 a^2 z^4+3 z^4+2 a^4 z^2-8 a^2 z^2-2 z^2 a^{-2} +7 z^2+2 a^4-5 a^2- a^{-2} +5 }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ 2 a^3 z^9+2 a z^9+4 a^4 z^8+9 a^2 z^8+5 z^8+3 a^5 z^7+a^3 z^7+2 a z^7+4 z^7 a^{-1} +a^6 z^6-11 a^4 z^6-26 a^2 z^6+z^6 a^{-2} -13 z^6-9 a^5 z^5-14 a^3 z^5-10 a z^5-5 z^5 a^{-1} -3 a^6 z^4+8 a^4 z^4+29 a^2 z^4+6 z^4 a^{-2} +24 z^4+7 a^5 z^3+12 a^3 z^3+8 a z^3+6 z^3 a^{-1} +3 z^3 a^{-3} +2 a^6 z^2-4 a^4 z^2-19 a^2 z^2-7 z^2 a^{-2} -20 z^2-2 a^5 z-3 a^3 z-2 a z-2 z a^{-1} -z a^{-3} +2 a^4+5 a^2+ a^{-2} +5 }[/math]
The A2 invariant [math]\displaystyle{ q^{18}-q^{16}+2 q^{14}+q^{12}-3 q^{10}+q^8-3 q^6+q^2+4 q^{-2} - q^{-4} +2 q^{-6} + q^{-8} -2 q^{-10} }[/math]
The G2 invariant Data:K11n119/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {9_34, K11n32,}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (-1, 2)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ -4 }[/math] [math]\displaystyle{ 16 }[/math] [math]\displaystyle{ 8 }[/math] [math]\displaystyle{ -\frac{14}{3} }[/math] [math]\displaystyle{ \frac{14}{3} }[/math] [math]\displaystyle{ -64 }[/math] [math]\displaystyle{ -\frac{416}{3} }[/math] [math]\displaystyle{ -\frac{128}{3} }[/math] [math]\displaystyle{ -48 }[/math] [math]\displaystyle{ -\frac{32}{3} }[/math] [math]\displaystyle{ 128 }[/math] [math]\displaystyle{ \frac{56}{3} }[/math] [math]\displaystyle{ -\frac{56}{3} }[/math] [math]\displaystyle{ \frac{11009}{30} }[/math] [math]\displaystyle{ -\frac{418}{15} }[/math] [math]\displaystyle{ \frac{7618}{45} }[/math] [math]\displaystyle{ \frac{1087}{18} }[/math] [math]\displaystyle{ \frac{449}{30} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]0 is the signature of K11n119. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-6-5-4-3-2-10123χ
7         2-2
5        4 4
3       42 -2
1      74  3
-1     65   -1
-3    56    -1
-5   46     2
-7  25      -3
-9 14       3
-11 2        -2
-131         1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-1 }[/math] [math]\displaystyle{ i=1 }[/math]
[math]\displaystyle{ r=-6 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{6} }[/math] [math]\displaystyle{ {\mathbb Z}^{6} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{6} }[/math] [math]\displaystyle{ {\mathbb Z}^{7} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11n118.gif

K11n118

K11n120.gif

K11n120