K11n118

From Knot Atlas
Jump to navigationJump to search

K11n117.gif

K11n117

K11n119.gif

K11n119

K11n118.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11n118 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X10,4,11,3 X5,15,6,14 X20,8,21,7 X2,10,3,9 X11,17,12,16 X13,18,14,19 X15,9,16,8 X17,1,18,22 X6,20,7,19 X21,12,22,13
Gauss code 1, -5, 2, -1, -3, -10, 4, 8, 5, -2, -6, 11, -7, 3, -8, 6, -9, 7, 10, -4, -11, 9
Dowker-Thistlethwaite code 4 10 -14 20 2 -16 -18 -8 -22 6 -12
A Braid Representative
BraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart0.gif
A Morse Link Presentation K11n118 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [math]\displaystyle{ 3 }[/math]
Rasmussen s-Invariant -4

[edit Notes for K11n118's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ -t^3+4 t^2-4 t+3-4 t^{-1} +4 t^{-2} - t^{-3} }[/math]
Conway polynomial [math]\displaystyle{ -z^6-2 z^4+3 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 21, 4 }
Jones polynomial [math]\displaystyle{ -q^9+2 q^8-3 q^7+4 q^6-4 q^5+3 q^4-2 q^3+2 q^2 }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ -z^6 a^{-6} +2 z^4 a^{-4} -5 z^4 a^{-6} +z^4 a^{-8} +7 z^2 a^{-4} -8 z^2 a^{-6} +4 z^2 a^{-8} +4 a^{-4} -5 a^{-6} +3 a^{-8} - a^{-10} }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^8 a^{-6} +z^8 a^{-8} +z^7 a^{-5} +2 z^7 a^{-7} +z^7 a^{-9} -5 z^6 a^{-6} -5 z^6 a^{-8} -3 z^5 a^{-5} -7 z^5 a^{-7} -4 z^5 a^{-9} +3 z^4 a^{-4} +13 z^4 a^{-6} +12 z^4 a^{-8} +2 z^4 a^{-10} +3 z^3 a^{-5} +10 z^3 a^{-7} +8 z^3 a^{-9} +z^3 a^{-11} -9 z^2 a^{-4} -15 z^2 a^{-6} -9 z^2 a^{-8} -3 z^2 a^{-10} -2 z a^{-5} -3 z a^{-7} -3 z a^{-9} -2 z a^{-11} +4 a^{-4} +5 a^{-6} +3 a^{-8} + a^{-10} }[/math]
The A2 invariant [math]\displaystyle{ 2 q^{-6} + q^{-8} +2 q^{-10} -2 q^{-18} - q^{-22} + q^{-24} + q^{-26} - q^{-32} }[/math]
The G2 invariant Data:K11n118/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {10_160,}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (3, 6)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 12 }[/math] [math]\displaystyle{ 48 }[/math] [math]\displaystyle{ 72 }[/math] [math]\displaystyle{ 254 }[/math] [math]\displaystyle{ 50 }[/math] [math]\displaystyle{ 576 }[/math] [math]\displaystyle{ 1376 }[/math] [math]\displaystyle{ 288 }[/math] [math]\displaystyle{ 208 }[/math] [math]\displaystyle{ 288 }[/math] [math]\displaystyle{ 1152 }[/math] [math]\displaystyle{ 3048 }[/math] [math]\displaystyle{ 600 }[/math] [math]\displaystyle{ \frac{73711}{10} }[/math] [math]\displaystyle{ \frac{2774}{15} }[/math] [math]\displaystyle{ \frac{16314}{5} }[/math] [math]\displaystyle{ \frac{27}{2} }[/math] [math]\displaystyle{ \frac{4271}{10} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]4 is the signature of K11n118. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
01234567χ
19       1-1
17      1 1
15     21 -1
13    21  1
11   22   0
9  12    -1
7 12     1
511      0
32       2
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=3 }[/math] [math]\displaystyle{ i=5 }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=7 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11n117.gif

K11n117

K11n119.gif

K11n119