9 33

From Knot Atlas
Jump to navigationJump to search

9 32.gif

9_32

9 34.gif

9_34

9 33.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 9 33's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 33 at Knotilus!


Knot presentations

Planar diagram presentation X4251 X12,8,13,7 X8394 X2,9,3,10 X18,13,1,14 X14,5,15,6 X6,17,7,18 X16,12,17,11 X10,16,11,15
Gauss code 1, -4, 3, -1, 6, -7, 2, -3, 4, -9, 8, -2, 5, -6, 9, -8, 7, -5
Dowker-Thistlethwaite code 4 8 14 12 2 16 18 10 6
Conway Notation [.21.2]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gif

Length is 9, width is 4,

Braid index is 4

9 33 ML.gif 9 33 AP.gif
[{3, 10}, {6, 2}, {1, 3}, {5, 8}, {7, 9}, {8, 11}, {10, 6}, {4, 7}, {2, 5}, {11, 4}, {9, 1}]

[edit Notes on presentations of 9 33]


Three dimensional invariants

Symmetry type Chiral
Unknotting number 1
3-genus 3
Bridge index 3
Super bridge index [math]\displaystyle{ \{4,6\} }[/math]
Nakanishi index 1
Maximal Thurston-Bennequin number [-6][-5]
Hyperbolic Volume 13.2805
A-Polynomial See Data:9 33/A-polynomial

[edit Notes for 9 33's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus [math]\displaystyle{ 1 }[/math]
Topological 4 genus [math]\displaystyle{ 1 }[/math]
Concordance genus [math]\displaystyle{ 3 }[/math]
Rasmussen s-Invariant 0

[edit Notes for 9 33's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ -t^3+6 t^2-14 t+19-14 t^{-1} +6 t^{-2} - t^{-3} }[/math]
Conway polynomial [math]\displaystyle{ -z^6+z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 61, 0 }
Jones polynomial [math]\displaystyle{ q^4-4 q^3+7 q^2-9 q+11-10 q^{-1} +9 q^{-2} -6 q^{-3} +3 q^{-4} - q^{-5} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ -z^6+2 a^2 z^4+z^4 a^{-2} -3 z^4-a^4 z^2+4 a^2 z^2+z^2 a^{-2} -3 z^2-a^4+2 a^2 }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ 2 a^2 z^8+2 z^8+4 a^3 z^7+10 a z^7+6 z^7 a^{-1} +3 a^4 z^6+5 a^2 z^6+7 z^6 a^{-2} +9 z^6+a^5 z^5-6 a^3 z^5-16 a z^5-5 z^5 a^{-1} +4 z^5 a^{-3} -6 a^4 z^4-16 a^2 z^4-9 z^4 a^{-2} +z^4 a^{-4} -20 z^4-2 a^5 z^3+a^3 z^3+5 a z^3-z^3 a^{-1} -3 z^3 a^{-3} +4 a^4 z^2+10 a^2 z^2+3 z^2 a^{-2} +9 z^2+a^5 z+a^3 z-a^4-2 a^2 }[/math]
The A2 invariant [math]\displaystyle{ -q^{16}+q^{12}-2 q^{10}+2 q^8+3 q^2-1+3 q^{-2} -2 q^{-4} + q^{-8} -2 q^{-10} + q^{-12} }[/math]
The G2 invariant [math]\displaystyle{ q^{80}-2 q^{78}+5 q^{76}-8 q^{74}+8 q^{72}-7 q^{70}-2 q^{68}+17 q^{66}-35 q^{64}+50 q^{62}-52 q^{60}+28 q^{58}+13 q^{56}-67 q^{54}+113 q^{52}-123 q^{50}+92 q^{48}-23 q^{46}-64 q^{44}+129 q^{42}-148 q^{40}+111 q^{38}-31 q^{36}-54 q^{34}+104 q^{32}-98 q^{30}+43 q^{28}+39 q^{26}-101 q^{24}+121 q^{22}-81 q^{20}-5 q^{18}+102 q^{16}-171 q^{14}+188 q^{12}-138 q^{10}+43 q^8+71 q^6-159 q^4+198 q^2-170+88 q^{-2} +17 q^{-4} -101 q^{-6} +132 q^{-8} -101 q^{-10} +29 q^{-12} +54 q^{-14} -99 q^{-16} +89 q^{-18} -33 q^{-20} -51 q^{-22} +119 q^{-24} -142 q^{-26} +110 q^{-28} -38 q^{-30} -44 q^{-32} +103 q^{-34} -124 q^{-36} +105 q^{-38} -58 q^{-40} +6 q^{-42} +31 q^{-44} -54 q^{-46} +53 q^{-48} -36 q^{-50} +20 q^{-52} -2 q^{-54} -6 q^{-56} +9 q^{-58} -10 q^{-60} +6 q^{-62} -3 q^{-64} + q^{-66} }[/math]

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11n55,}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (1, -1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 4 }[/math] [math]\displaystyle{ -8 }[/math] [math]\displaystyle{ 8 }[/math] [math]\displaystyle{ \frac{62}{3} }[/math] [math]\displaystyle{ \frac{10}{3} }[/math] [math]\displaystyle{ -32 }[/math] [math]\displaystyle{ -\frac{176}{3} }[/math] [math]\displaystyle{ \frac{64}{3} }[/math] [math]\displaystyle{ -40 }[/math] [math]\displaystyle{ \frac{32}{3} }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ \frac{248}{3} }[/math] [math]\displaystyle{ \frac{40}{3} }[/math] [math]\displaystyle{ \frac{5071}{30} }[/math] [math]\displaystyle{ -\frac{422}{15} }[/math] [math]\displaystyle{ \frac{3062}{45} }[/math] [math]\displaystyle{ \frac{593}{18} }[/math] [math]\displaystyle{ \frac{271}{30} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]0 is the signature of 9 33. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-5-4-3-2-101234χ
9         11
7        3 -3
5       41 3
3      53  -2
1     64   2
-1    56    1
-3   45     -1
-5  25      3
-7 14       -3
-9 2        2
-111         -1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-1 }[/math] [math]\displaystyle{ i=1 }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{6} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

The Coloured Jones Polynomials