8 14: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
(Resetting knot page to basic template.)
 
No edit summary
 
(7 intermediate revisions by 3 users not shown)
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
{{Template:Basic Knot Invariants|name=8_14}}
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit!
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- -->
<!-- -->
{{Rolfsen Knot Page|
n = 8 |
k = 14 |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-2,8,-5,3,-4,2,-6,7,-8,5,-7,6/goTop.html |
braid_table = <table cellspacing=0 cellpadding=0 border=0>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr>
</table> |
braid_crossings = 9 |
braid_width = 4 |
braid_index = 4 |
same_alexander = [[9_8]], [[10_131]], |
same_jones = |
khovanov_table = <table border=1>
<tr align=center>
<td width=15.3846%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
<td width=7.69231%>-6</td ><td width=7.69231%>-5</td ><td width=7.69231%>-4</td ><td width=7.69231%>-3</td ><td width=7.69231%>-2</td ><td width=7.69231%>-1</td ><td width=7.69231%>0</td ><td width=7.69231%>1</td ><td width=7.69231%>2</td ><td width=15.3846%>&chi;</td></tr>
<tr align=center><td>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>3</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>2</td></tr>
<tr align=center><td>-3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>3</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-5</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>3</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-7</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td bgcolor=yellow>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-9</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td bgcolor=yellow>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-11</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-13</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-2</td></tr>
<tr align=center><td>-15</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
</table> |
coloured_jones_2 = <math>q^4-2 q^3+6 q-8-2 q^{-1} +18 q^{-2} -17 q^{-3} -8 q^{-4} +32 q^{-5} -22 q^{-6} -15 q^{-7} +39 q^{-8} -21 q^{-9} -18 q^{-10} +34 q^{-11} -14 q^{-12} -16 q^{-13} +22 q^{-14} -5 q^{-15} -10 q^{-16} +9 q^{-17} -3 q^{-19} + q^{-20} </math> |
coloured_jones_3 = <math>q^9-2 q^8+2 q^6+3 q^5-7 q^4-4 q^3+11 q^2+11 q-20-18 q^{-1} +26 q^{-2} +35 q^{-3} -37 q^{-4} -49 q^{-5} +39 q^{-6} +72 q^{-7} -43 q^{-8} -89 q^{-9} +40 q^{-10} +108 q^{-11} -39 q^{-12} -116 q^{-13} +29 q^{-14} +126 q^{-15} -26 q^{-16} -123 q^{-17} +15 q^{-18} +119 q^{-19} -8 q^{-20} -107 q^{-21} -2 q^{-22} +92 q^{-23} +12 q^{-24} -76 q^{-25} -16 q^{-26} +55 q^{-27} +21 q^{-28} -38 q^{-29} -19 q^{-30} +21 q^{-31} +17 q^{-32} -12 q^{-33} -10 q^{-34} +4 q^{-35} +5 q^{-36} -3 q^{-38} + q^{-39} </math> |
coloured_jones_4 = <math>q^{16}-2 q^{15}+2 q^{13}-q^{12}+4 q^{11}-9 q^{10}+10 q^8-q^7+11 q^6-32 q^5-7 q^4+31 q^3+14 q^2+31 q-84-41 q^{-1} +56 q^{-2} +60 q^{-3} +94 q^{-4} -155 q^{-5} -123 q^{-6} +51 q^{-7} +126 q^{-8} +216 q^{-9} -206 q^{-10} -235 q^{-11} -5 q^{-12} +177 q^{-13} +368 q^{-14} -215 q^{-15} -331 q^{-16} -87 q^{-17} +191 q^{-18} +491 q^{-19} -189 q^{-20} -378 q^{-21} -161 q^{-22} +172 q^{-23} +555 q^{-24} -146 q^{-25} -375 q^{-26} -207 q^{-27} +131 q^{-28} +548 q^{-29} -89 q^{-30} -321 q^{-31} -228 q^{-32} +66 q^{-33} +481 q^{-34} -21 q^{-35} -225 q^{-36} -220 q^{-37} -12 q^{-38} +362 q^{-39} +35 q^{-40} -108 q^{-41} -175 q^{-42} -71 q^{-43} +218 q^{-44} +52 q^{-45} -15 q^{-46} -100 q^{-47} -81 q^{-48} +94 q^{-49} +34 q^{-50} +23 q^{-51} -36 q^{-52} -50 q^{-53} +27 q^{-54} +9 q^{-55} +17 q^{-56} -5 q^{-57} -17 q^{-58} +4 q^{-59} +5 q^{-61} -3 q^{-63} + q^{-64} </math> |
coloured_jones_5 = <math>q^{25}-2 q^{24}+2 q^{22}-q^{21}+2 q^{19}-5 q^{18}-q^{17}+9 q^{16}+q^{15}-4 q^{14}-3 q^{13}-15 q^{12}-q^{11}+27 q^{10}+24 q^9-3 q^8-33 q^7-58 q^6-18 q^5+69 q^4+103 q^3+46 q^2-79 q-183-117 q^{-1} +98 q^{-2} +266 q^{-3} +220 q^{-4} -56 q^{-5} -378 q^{-6} -376 q^{-7} +8 q^{-8} +452 q^{-9} +553 q^{-10} +133 q^{-11} -525 q^{-12} -766 q^{-13} -274 q^{-14} +540 q^{-15} +949 q^{-16} +492 q^{-17} -534 q^{-18} -1134 q^{-19} -680 q^{-20} +475 q^{-21} +1267 q^{-22} +890 q^{-23} -407 q^{-24} -1375 q^{-25} -1043 q^{-26} +307 q^{-27} +1429 q^{-28} +1203 q^{-29} -234 q^{-30} -1460 q^{-31} -1282 q^{-32} +130 q^{-33} +1443 q^{-34} +1376 q^{-35} -60 q^{-36} -1420 q^{-37} -1385 q^{-38} -37 q^{-39} +1342 q^{-40} +1414 q^{-41} +114 q^{-42} -1252 q^{-43} -1378 q^{-44} -210 q^{-45} +1113 q^{-46} +1334 q^{-47} +304 q^{-48} -952 q^{-49} -1248 q^{-50} -390 q^{-51} +758 q^{-52} +1126 q^{-53} +465 q^{-54} -547 q^{-55} -981 q^{-56} -505 q^{-57} +348 q^{-58} +788 q^{-59} +518 q^{-60} -161 q^{-61} -607 q^{-62} -472 q^{-63} +19 q^{-64} +408 q^{-65} +409 q^{-66} +78 q^{-67} -258 q^{-68} -304 q^{-69} -118 q^{-70} +117 q^{-71} +219 q^{-72} +124 q^{-73} -46 q^{-74} -131 q^{-75} -94 q^{-76} -5 q^{-77} +66 q^{-78} +72 q^{-79} +16 q^{-80} -32 q^{-81} -39 q^{-82} -13 q^{-83} +6 q^{-84} +18 q^{-85} +17 q^{-86} -5 q^{-87} -10 q^{-88} -3 q^{-89} +5 q^{-92} -3 q^{-94} + q^{-95} </math> |
coloured_jones_6 = <math>q^{36}-2 q^{35}+2 q^{33}-q^{32}-2 q^{30}+6 q^{29}-6 q^{28}-2 q^{27}+11 q^{26}-3 q^{25}-4 q^{24}-12 q^{23}+14 q^{22}-13 q^{21}-q^{20}+40 q^{19}+5 q^{18}-14 q^{17}-51 q^{16}+7 q^{15}-45 q^{14}+8 q^{13}+129 q^{12}+70 q^{11}+2 q^{10}-142 q^9-77 q^8-188 q^7-27 q^6+310 q^5+305 q^4+181 q^3-206 q^2-279 q-616-306 q^{-1} +459 q^{-2} +767 q^{-3} +751 q^{-4} +33 q^{-5} -420 q^{-6} -1391 q^{-7} -1106 q^{-8} +223 q^{-9} +1230 q^{-10} +1757 q^{-11} +882 q^{-12} -107 q^{-13} -2225 q^{-14} -2424 q^{-15} -703 q^{-16} +1269 q^{-17} +2849 q^{-18} +2286 q^{-19} +909 q^{-20} -2673 q^{-21} -3841 q^{-22} -2180 q^{-23} +676 q^{-24} +3567 q^{-25} +3777 q^{-26} +2400 q^{-27} -2542 q^{-28} -4884 q^{-29} -3703 q^{-30} -313 q^{-31} +3737 q^{-32} +4898 q^{-33} +3853 q^{-34} -2036 q^{-35} -5373 q^{-36} -4845 q^{-37} -1279 q^{-38} +3519 q^{-39} +5492 q^{-40} +4912 q^{-41} -1457 q^{-42} -5422 q^{-43} -5490 q^{-44} -1996 q^{-45} +3131 q^{-46} +5656 q^{-47} +5517 q^{-48} -923 q^{-49} -5177 q^{-50} -5734 q^{-51} -2486 q^{-52} +2625 q^{-53} +5496 q^{-54} +5772 q^{-55} -364 q^{-56} -4641 q^{-57} -5654 q^{-58} -2868 q^{-59} +1907 q^{-60} +4985 q^{-61} +5739 q^{-62} +325 q^{-63} -3718 q^{-64} -5196 q^{-65} -3161 q^{-66} +902 q^{-67} +4022 q^{-68} +5343 q^{-69} +1087 q^{-70} -2391 q^{-71} -4253 q^{-72} -3204 q^{-73} -237 q^{-74} +2629 q^{-75} +4445 q^{-76} +1641 q^{-77} -917 q^{-78} -2861 q^{-79} -2767 q^{-80} -1116 q^{-81} +1119 q^{-82} +3080 q^{-83} +1669 q^{-84} +228 q^{-85} -1373 q^{-86} -1851 q^{-87} -1365 q^{-88} -12 q^{-89} +1623 q^{-90} +1162 q^{-91} +686 q^{-92} -288 q^{-93} -834 q^{-94} -1018 q^{-95} -458 q^{-96} +564 q^{-97} +505 q^{-98} +552 q^{-99} +154 q^{-100} -156 q^{-101} -495 q^{-102} -377 q^{-103} +91 q^{-104} +85 q^{-105} +247 q^{-106} +155 q^{-107} +75 q^{-108} -151 q^{-109} -169 q^{-110} -5 q^{-111} -35 q^{-112} +59 q^{-113} +58 q^{-114} +67 q^{-115} -28 q^{-116} -46 q^{-117} -2 q^{-118} -25 q^{-119} +6 q^{-120} +9 q^{-121} +26 q^{-122} -5 q^{-123} -10 q^{-124} +4 q^{-125} -7 q^{-126} +5 q^{-129} -3 q^{-131} + q^{-132} </math> |
coloured_jones_7 = <math>q^{49}-2 q^{48}+2 q^{46}-q^{45}-2 q^{43}+2 q^{42}+5 q^{41}-7 q^{40}+7 q^{38}-3 q^{37}-2 q^{36}-12 q^{35}+q^{34}+20 q^{33}-11 q^{32}+6 q^{31}+21 q^{30}-4 q^{29}-8 q^{28}-51 q^{27}-25 q^{26}+35 q^{25}+52 q^{23}+83 q^{22}+19 q^{21}-14 q^{20}-157 q^{19}-164 q^{18}-29 q^{17}-7 q^{16}+199 q^{15}+318 q^{14}+214 q^{13}+87 q^{12}-336 q^{11}-566 q^{10}-439 q^9-289 q^8+340 q^7+874 q^6+925 q^5+725 q^4-269 q^3-1203 q^2-1538 q-1475-152 q^{-1} +1434 q^{-2} +2356 q^{-3} +2577 q^{-4} +949 q^{-5} -1355 q^{-6} -3130 q^{-7} -4081 q^{-8} -2342 q^{-9} +847 q^{-10} +3813 q^{-11} +5765 q^{-12} +4216 q^{-13} +336 q^{-14} -4003 q^{-15} -7550 q^{-16} -6681 q^{-17} -2147 q^{-18} +3744 q^{-19} +9111 q^{-20} +9280 q^{-21} +4616 q^{-22} -2657 q^{-23} -10290 q^{-24} -12076 q^{-25} -7532 q^{-26} +1100 q^{-27} +10901 q^{-28} +14515 q^{-29} +10638 q^{-30} +1136 q^{-31} -10925 q^{-32} -16688 q^{-33} -13698 q^{-34} -3553 q^{-35} +10439 q^{-36} +18233 q^{-37} +16479 q^{-38} +6129 q^{-39} -9558 q^{-40} -19338 q^{-41} -18830 q^{-42} -8479 q^{-43} +8428 q^{-44} +19907 q^{-45} +20697 q^{-46} +10636 q^{-47} -7272 q^{-48} -20178 q^{-49} -22038 q^{-50} -12343 q^{-51} +6107 q^{-52} +20069 q^{-53} +23014 q^{-54} +13796 q^{-55} -5089 q^{-56} -19909 q^{-57} -23577 q^{-58} -14790 q^{-59} +4117 q^{-60} +19454 q^{-61} +23913 q^{-62} +15709 q^{-63} -3258 q^{-64} -19044 q^{-65} -23985 q^{-66} -16270 q^{-67} +2364 q^{-68} +18291 q^{-69} +23889 q^{-70} +16880 q^{-71} -1413 q^{-72} -17493 q^{-73} -23547 q^{-74} -17258 q^{-75} +318 q^{-76} +16274 q^{-77} +22936 q^{-78} +17653 q^{-79} +962 q^{-80} -14797 q^{-81} -21998 q^{-82} -17841 q^{-83} -2380 q^{-84} +12872 q^{-85} +20621 q^{-86} +17836 q^{-87} +3934 q^{-88} -10582 q^{-89} -18810 q^{-90} -17494 q^{-91} -5449 q^{-92} +8006 q^{-93} +16494 q^{-94} +16696 q^{-95} +6798 q^{-96} -5250 q^{-97} -13766 q^{-98} -15435 q^{-99} -7771 q^{-100} +2596 q^{-101} +10761 q^{-102} +13609 q^{-103} +8222 q^{-104} -179 q^{-105} -7700 q^{-106} -11405 q^{-107} -8068 q^{-108} -1650 q^{-109} +4794 q^{-110} +8892 q^{-111} +7352 q^{-112} +2891 q^{-113} -2354 q^{-114} -6441 q^{-115} -6116 q^{-116} -3371 q^{-117} +463 q^{-118} +4126 q^{-119} +4701 q^{-120} +3337 q^{-121} +685 q^{-122} -2330 q^{-123} -3209 q^{-124} -2765 q^{-125} -1283 q^{-126} +960 q^{-127} +1949 q^{-128} +2102 q^{-129} +1361 q^{-130} -212 q^{-131} -977 q^{-132} -1342 q^{-133} -1140 q^{-134} -211 q^{-135} +339 q^{-136} +772 q^{-137} +850 q^{-138} +295 q^{-139} -45 q^{-140} -353 q^{-141} -509 q^{-142} -244 q^{-143} -123 q^{-144} +110 q^{-145} +308 q^{-146} +175 q^{-147} +108 q^{-148} -28 q^{-149} -134 q^{-150} -71 q^{-151} -92 q^{-152} -42 q^{-153} +67 q^{-154} +53 q^{-155} +53 q^{-156} +12 q^{-157} -31 q^{-158} +2 q^{-159} -25 q^{-160} -25 q^{-161} +6 q^{-162} +9 q^{-163} +17 q^{-164} +4 q^{-165} -10 q^{-166} +4 q^{-167} -7 q^{-169} +5 q^{-172} -3 q^{-174} + q^{-175} </math> |
computer_talk =
<table>
<tr valign=top>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[8, 14]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[5, 10, 6, 11], X[3, 9, 4, 8], X[9, 3, 10, 2],
X[7, 14, 8, 15], X[11, 16, 12, 1], X[15, 12, 16, 13], X[13, 6, 14, 7]]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[8, 14]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 4, -3, 1, -2, 8, -5, 3, -4, 2, -6, 7, -8, 5, -7, 6]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[8, 14]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 8, 10, 14, 2, 16, 6, 12]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[8, 14]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[4, {-1, -1, -1, -2, 1, -2, 3, -2, 3}]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 9}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[8, 14]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[8, 14]]]</nowiki></code></td></tr>
<tr align=left><td></td><td>[[Image:8_14_ML.gif]]</td></tr><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[8, 14]]&) /@ {
SymmetryType, UnknottingNumber, ThreeGenus,
BridgeIndex, SuperBridgeIndex, NakanishiIndex
}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 1, 2, 2, {4, 5}, 1}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[8, 14]][t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 8 2
-11 - -- + - + 8 t - 2 t
2 t
t</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[8, 14]][z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 4
1 - 2 z</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[8, 14], Knot[9, 8], Knot[10, 131]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[8, 14]], KnotSignature[Knot[8, 14]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{31, -2}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[8, 14]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -7 3 4 5 6 5 4
-2 + q - -- + -- - -- + -- - -- + - + q
6 5 4 3 2 q
q q q q q</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[8, 14]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[8, 14]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -22 -20 -18 -16 -14 -12 -6 -4 2 4
q - q - q + q - q + q + q - q + -- + q
2
q</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[8, 14]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 2 4 2 6 2 2 4 4 4
1 + z - a z - a z + a z - a z - a z</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[8, 14]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 5 7 2 2 2 4 2 6 2
1 + a z + 3 a z + 3 a z + a z - 2 z - a z + 3 a z + a z -
8 2 3 3 3 5 3 7 3 4 2 4 4 4
a z - 3 a z - 6 a z - 8 a z - 5 a z + z - a z - 7 a z -
6 4 8 4 5 3 5 5 5 7 5 2 6
4 a z + a z + 2 a z + 3 a z + 4 a z + 3 a z + 2 a z +
4 6 6 6 3 7 5 7
5 a z + 3 a z + a z + a z</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[8, 14]], Vassiliev[3][Knot[8, 14]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{0, 0}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[8, 14]][q, t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2 3 1 2 1 2 2 3 2
-- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- +
3 q 15 6 13 5 11 5 11 4 9 4 9 3 7 3
q q t q t q t q t q t q t q t
3 3 2 3 t 3 2
----- + ----- + ---- + ---- + - + q t + q t
7 2 5 2 5 3 q
q t q t q t q t</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[8, 14], 2][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -20 3 9 10 5 22 16 14 34 18 21
-8 + q - --- + --- - --- - --- + --- - --- - --- + --- - --- - -- +
19 17 16 15 14 13 12 11 10 9
q q q q q q q q q q
39 15 22 32 8 17 18 2 3 4
-- - -- - -- + -- - -- - -- + -- - - + 6 q - 2 q + q
8 7 6 5 4 3 2 q
q q q q q q q</nowiki></code></td></tr>
</table> }}

Latest revision as of 17:03, 1 September 2005

8 13.gif

8_13

8 15.gif

8_15

8 14.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 8 14's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 8 14 at Knotilus!


Knot presentations

Planar diagram presentation X1425 X5,10,6,11 X3948 X9,3,10,2 X7,14,8,15 X11,16,12,1 X15,12,16,13 X13,6,14,7
Gauss code -1, 4, -3, 1, -2, 8, -5, 3, -4, 2, -6, 7, -8, 5, -7, 6
Dowker-Thistlethwaite code 4 8 10 14 2 16 6 12
Conway Notation [22112]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif

Length is 9, width is 4,

Braid index is 4

8 14 ML.gif 8 14 AP.gif
[{10, 4}, {3, 8}, {9, 5}, {4, 6}, {8, 10}, {5, 2}, {1, 3}, {2, 7}, {6, 9}, {7, 1}]

[edit Notes on presentations of 8 14]

Knot 8_14.
A graph, knot 8_14.

Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 2
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-9][-1]
Hyperbolic Volume 9.2178
A-Polynomial See Data:8 14/A-polynomial

[edit Notes for 8 14's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -2

[edit Notes for 8 14's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 31, -2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {9_8, 10_131,}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (0, 0)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 8 14. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-6-5-4-3-2-1012χ
3        11
1       1 -1
-1      31 2
-3     32  -1
-5    32   1
-7   23    1
-9  23     -1
-11 12      1
-13 2       -2
-151        1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials