K11a109: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| Line 16: | Line 16: | ||
k = 109 | |
k = 109 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-5,2,-1,3,-10,4,-9,5,-2,6,-11,7,-3,8,-4,9,-8,10,-6,11,-7/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-5,2,-1,3,-10,4,-9,5,-2,6,-11,7,-3,8,-4,9,-8,10,-6,11,-7/goTop.html | |
||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
braid_table = <table cellspacing=0 cellpadding=0 border=0 style="white-space: pre"> |
||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
| Line 58: | Line 58: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September 3, 2005, 2:11:43)...</td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[11, Alternating, 109]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[11, Alternating, 109]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
||
Latest revision as of 01:40, 3 September 2005
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X4251 X10,4,11,3 X14,5,15,6 X16,8,17,7 X2,10,3,9 X20,11,21,12 X22,13,1,14 X18,16,19,15 X8,18,9,17 X6,19,7,20 X12,21,13,22 |
| Gauss code | 1, -5, 2, -1, 3, -10, 4, -9, 5, -2, 6, -11, 7, -3, 8, -4, 9, -8, 10, -6, 11, -7 |
| Dowker-Thistlethwaite code | 4 10 14 16 2 20 22 18 8 6 12 |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^4-5 t^3+14 t^2-24 t+29-24 t^{-1} +14 t^{-2} -5 t^{-3} + t^{-4} } |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8+3 z^6+4 z^4+3 z^2+1} |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
| Determinant and Signature | { 117, 0 } |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^6-4 q^5+7 q^4-12 q^3+17 q^2-18 q+19-16 q^{-1} +12 q^{-2} -7 q^{-3} +3 q^{-4} - q^{-5} } |
| HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8-a^2 z^6-2 z^6 a^{-2} +6 z^6-4 a^2 z^4-8 z^4 a^{-2} +z^4 a^{-4} +15 z^4-6 a^2 z^2-10 z^2 a^{-2} +2 z^2 a^{-4} +17 z^2-3 a^2-3 a^{-2} +7} |
| Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^{10} a^{-2} +z^{10}+4 a z^9+8 z^9 a^{-1} +4 z^9 a^{-3} +6 a^2 z^8+13 z^8 a^{-2} +6 z^8 a^{-4} +13 z^8+5 a^3 z^7+a z^7-9 z^7 a^{-1} -z^7 a^{-3} +4 z^7 a^{-5} +3 a^4 z^6-9 a^2 z^6-42 z^6 a^{-2} -16 z^6 a^{-4} +z^6 a^{-6} -37 z^6+a^5 z^5-7 a^3 z^5-11 a z^5-10 z^5 a^{-1} -18 z^5 a^{-3} -11 z^5 a^{-5} -5 a^4 z^4+9 a^2 z^4+46 z^4 a^{-2} +13 z^4 a^{-4} -2 z^4 a^{-6} +45 z^4-2 a^5 z^3+3 a^3 z^3+13 a z^3+20 z^3 a^{-1} +19 z^3 a^{-3} +7 z^3 a^{-5} +2 a^4 z^2-8 a^2 z^2-22 z^2 a^{-2} -5 z^2 a^{-4} -27 z^2+a^5 z-a^3 z-6 a z-8 z a^{-1} -4 z a^{-3} +3 a^2+3 a^{-2} +7} |
| The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{14}+q^{12}-3 q^{10}+q^8+q^6-2 q^4+5 q^2-2+4 q^{-2} + q^{-4} +3 q^{-8} -4 q^{-10} - q^{-14} - q^{-16} + q^{-18} } |
| The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{80}-2 q^{78}+5 q^{76}-8 q^{74}+9 q^{72}-8 q^{70}+q^{68}+13 q^{66}-29 q^{64}+47 q^{62}-59 q^{60}+53 q^{58}-30 q^{56}-20 q^{54}+87 q^{52}-151 q^{50}+190 q^{48}-184 q^{46}+111 q^{44}+17 q^{42}-178 q^{40}+321 q^{38}-383 q^{36}+329 q^{34}-167 q^{32}-75 q^{30}+296 q^{28}-427 q^{26}+416 q^{24}-248 q^{22}-q^{20}+233 q^{18}-340 q^{16}+281 q^{14}-81 q^{12}-170 q^{10}+352 q^8-375 q^6+215 q^4+84 q^2-392+602 q^{-2} -592 q^{-4} +372 q^{-6} -11 q^{-8} -369 q^{-10} +626 q^{-12} -669 q^{-14} +501 q^{-16} -172 q^{-18} -178 q^{-20} +435 q^{-22} -489 q^{-24} +346 q^{-26} -84 q^{-28} -187 q^{-30} +334 q^{-32} -310 q^{-34} +123 q^{-36} +138 q^{-38} -351 q^{-40} +438 q^{-42} -346 q^{-44} +100 q^{-46} +172 q^{-48} -392 q^{-50} +469 q^{-52} -393 q^{-54} +203 q^{-56} +24 q^{-58} -208 q^{-60} +303 q^{-62} -291 q^{-64} +199 q^{-66} -76 q^{-68} -33 q^{-70} +95 q^{-72} -115 q^{-74} +96 q^{-76} -55 q^{-78} +22 q^{-80} +7 q^{-82} -18 q^{-84} +17 q^{-86} -14 q^{-88} +7 q^{-90} -3 q^{-92} + q^{-94} } |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a109"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^4-5 t^3+14 t^2-24 t+29-24 t^{-1} +14 t^{-2} -5 t^{-3} + t^{-4} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8+3 z^6+4 z^4+3 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 117, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^6-4 q^5+7 q^4-12 q^3+17 q^2-18 q+19-16 q^{-1} +12 q^{-2} -7 q^{-3} +3 q^{-4} - q^{-5} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8-a^2 z^6-2 z^6 a^{-2} +6 z^6-4 a^2 z^4-8 z^4 a^{-2} +z^4 a^{-4} +15 z^4-6 a^2 z^2-10 z^2 a^{-2} +2 z^2 a^{-4} +17 z^2-3 a^2-3 a^{-2} +7} |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^{10} a^{-2} +z^{10}+4 a z^9+8 z^9 a^{-1} +4 z^9 a^{-3} +6 a^2 z^8+13 z^8 a^{-2} +6 z^8 a^{-4} +13 z^8+5 a^3 z^7+a z^7-9 z^7 a^{-1} -z^7 a^{-3} +4 z^7 a^{-5} +3 a^4 z^6-9 a^2 z^6-42 z^6 a^{-2} -16 z^6 a^{-4} +z^6 a^{-6} -37 z^6+a^5 z^5-7 a^3 z^5-11 a z^5-10 z^5 a^{-1} -18 z^5 a^{-3} -11 z^5 a^{-5} -5 a^4 z^4+9 a^2 z^4+46 z^4 a^{-2} +13 z^4 a^{-4} -2 z^4 a^{-6} +45 z^4-2 a^5 z^3+3 a^3 z^3+13 a z^3+20 z^3 a^{-1} +19 z^3 a^{-3} +7 z^3 a^{-5} +2 a^4 z^2-8 a^2 z^2-22 z^2 a^{-2} -5 z^2 a^{-4} -27 z^2+a^5 z-a^3 z-6 a z-8 z a^{-1} -4 z a^{-3} +3 a^2+3 a^{-2} +7} |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11a44, K11a47,}
Same Jones Polynomial (up to mirroring, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q\leftrightarrow q^{-1}} ): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a109"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^4-5 t^3+14 t^2-24 t+29-24 t^{-1} +14 t^{-2} -5 t^{-3} + t^{-4} } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^6-4 q^5+7 q^4-12 q^3+17 q^2-18 q+19-16 q^{-1} +12 q^{-2} -7 q^{-3} +3 q^{-4} - q^{-5} } } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11a44, K11a47,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (3, 0) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 0 is the signature of K11a109. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



