9 38: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
(Resetting knot page to basic template.)
 
No edit summary
 
(6 intermediate revisions by 3 users not shown)
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
{{Template:Basic Knot Invariants|name=9_38}}
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit!
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- -->
<!-- -->
{{Rolfsen Knot Page|
n = 9 |
k = 38 |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,9,-5,6,-2,1,-3,4,-6,5,-8,7,-9,2,-4,8,-7,3/goTop.html |
braid_table = <table cellspacing=0 cellpadding=0 border=0>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]]</td></tr>
</table> |
braid_crossings = 11 |
braid_width = 4 |
braid_index = 4 |
same_alexander = [[10_63]], |
same_jones = |
khovanov_table = <table border=1>
<tr align=center>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
<td width=7.14286%>-9</td ><td width=7.14286%>-8</td ><td width=7.14286%>-7</td ><td width=7.14286%>-6</td ><td width=7.14286%>-5</td ><td width=7.14286%>-4</td ><td width=7.14286%>-3</td ><td width=7.14286%>-2</td ><td width=7.14286%>-1</td ><td width=7.14286%>0</td ><td width=14.2857%>&chi;</td></tr>
<tr align=center><td>-3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>-5</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>3</td><td bgcolor=yellow>1</td><td>-2</td></tr>
<tr align=center><td>-7</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>4</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>4</td></tr>
<tr align=center><td>-9</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>4</td><td bgcolor=yellow>3</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-11</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>6</td><td bgcolor=yellow>4</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>2</td></tr>
<tr align=center><td>-13</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>4</td><td bgcolor=yellow>4</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>-15</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>4</td><td bgcolor=yellow>6</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-2</td></tr>
<tr align=center><td>-17</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td bgcolor=yellow>4</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>2</td></tr>
<tr align=center><td>-19</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>4</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-3</td></tr>
<tr align=center><td>-21</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>2</td></tr>
<tr align=center><td>-23</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
</table> |
coloured_jones_2 = <math> q^{-4} -3 q^{-5} +3 q^{-6} +8 q^{-7} -20 q^{-8} +7 q^{-9} +34 q^{-10} -50 q^{-11} +2 q^{-12} +71 q^{-13} -74 q^{-14} -14 q^{-15} +97 q^{-16} -77 q^{-17} -29 q^{-18} +98 q^{-19} -57 q^{-20} -37 q^{-21} +74 q^{-22} -27 q^{-23} -32 q^{-24} +38 q^{-25} -5 q^{-26} -16 q^{-27} +10 q^{-28} + q^{-29} -3 q^{-30} + q^{-31} </math> |
coloured_jones_3 = <math> q^{-6} -3 q^{-7} +3 q^{-8} +4 q^{-9} -4 q^{-10} -14 q^{-11} +11 q^{-12} +34 q^{-13} -16 q^{-14} -71 q^{-15} +20 q^{-16} +117 q^{-17} +6 q^{-18} -197 q^{-19} -29 q^{-20} +257 q^{-21} +100 q^{-22} -334 q^{-23} -162 q^{-24} +369 q^{-25} +253 q^{-26} -407 q^{-27} -315 q^{-28} +399 q^{-29} +380 q^{-30} -385 q^{-31} -417 q^{-32} +343 q^{-33} +440 q^{-34} -287 q^{-35} -446 q^{-36} +224 q^{-37} +425 q^{-38} -142 q^{-39} -395 q^{-40} +71 q^{-41} +338 q^{-42} -3 q^{-43} -272 q^{-44} -41 q^{-45} +192 q^{-46} +69 q^{-47} -125 q^{-48} -65 q^{-49} +64 q^{-50} +53 q^{-51} -27 q^{-52} -33 q^{-53} +8 q^{-54} +16 q^{-55} -2 q^{-56} -5 q^{-57} - q^{-58} +3 q^{-59} - q^{-60} </math> |
coloured_jones_4 = <math> q^{-8} -3 q^{-9} +3 q^{-10} +4 q^{-11} -8 q^{-12} +2 q^{-13} -10 q^{-14} +21 q^{-15} +25 q^{-16} -44 q^{-17} -17 q^{-18} -45 q^{-19} +95 q^{-20} +138 q^{-21} -108 q^{-22} -139 q^{-23} -231 q^{-24} +236 q^{-25} +503 q^{-26} -38 q^{-27} -377 q^{-28} -809 q^{-29} +219 q^{-30} +1158 q^{-31} +466 q^{-32} -473 q^{-33} -1785 q^{-34} -269 q^{-35} +1751 q^{-36} +1385 q^{-37} -107 q^{-38} -2731 q^{-39} -1158 q^{-40} +1900 q^{-41} +2279 q^{-42} +627 q^{-43} -3221 q^{-44} -2008 q^{-45} +1606 q^{-46} +2768 q^{-47} +1373 q^{-48} -3202 q^{-49} -2515 q^{-50} +1093 q^{-51} +2809 q^{-52} +1921 q^{-53} -2790 q^{-54} -2672 q^{-55} +459 q^{-56} +2498 q^{-57} +2274 q^{-58} -2054 q^{-59} -2528 q^{-60} -252 q^{-61} +1859 q^{-62} +2382 q^{-63} -1071 q^{-64} -2026 q^{-65} -862 q^{-66} +956 q^{-67} +2086 q^{-68} -131 q^{-69} -1198 q^{-70} -1052 q^{-71} +96 q^{-72} +1364 q^{-73} +365 q^{-74} -364 q^{-75} -743 q^{-76} -328 q^{-77} +572 q^{-78} +330 q^{-79} +77 q^{-80} -284 q^{-81} -281 q^{-82} +118 q^{-83} +111 q^{-84} +112 q^{-85} -40 q^{-86} -102 q^{-87} +7 q^{-88} +5 q^{-89} +35 q^{-90} +4 q^{-91} -19 q^{-92} +2 q^{-93} -3 q^{-94} +5 q^{-95} + q^{-96} -3 q^{-97} + q^{-98} </math> |
coloured_jones_5 = <math> q^{-10} -3 q^{-11} +3 q^{-12} +4 q^{-13} -8 q^{-14} -2 q^{-15} +6 q^{-16} +12 q^{-18} +7 q^{-19} -33 q^{-20} -37 q^{-21} +22 q^{-22} +55 q^{-23} +82 q^{-24} +11 q^{-25} -145 q^{-26} -224 q^{-27} -54 q^{-28} +267 q^{-29} +477 q^{-30} +270 q^{-31} -394 q^{-32} -953 q^{-33} -729 q^{-34} +373 q^{-35} +1631 q^{-36} +1658 q^{-37} -80 q^{-38} -2379 q^{-39} -3040 q^{-40} -904 q^{-41} +2975 q^{-42} +5037 q^{-43} +2512 q^{-44} -3103 q^{-45} -7067 q^{-46} -5137 q^{-47} +2424 q^{-48} +9222 q^{-49} +8197 q^{-50} -908 q^{-51} -10595 q^{-52} -11714 q^{-53} -1536 q^{-54} +11480 q^{-55} +14870 q^{-56} +4438 q^{-57} -11246 q^{-58} -17656 q^{-59} -7573 q^{-60} +10499 q^{-61} +19516 q^{-62} +10432 q^{-63} -9024 q^{-64} -20712 q^{-65} -12892 q^{-66} +7498 q^{-67} +21044 q^{-68} +14737 q^{-69} -5739 q^{-70} -20919 q^{-71} -16091 q^{-72} +4156 q^{-73} +20295 q^{-74} +16953 q^{-75} -2520 q^{-76} -19340 q^{-77} -17535 q^{-78} +891 q^{-79} +18076 q^{-80} +17809 q^{-81} +828 q^{-82} -16377 q^{-83} -17823 q^{-84} -2746 q^{-85} +14306 q^{-86} +17498 q^{-87} +4643 q^{-88} -11685 q^{-89} -16664 q^{-90} -6553 q^{-91} +8704 q^{-92} +15262 q^{-93} +8050 q^{-94} -5441 q^{-95} -13152 q^{-96} -9040 q^{-97} +2285 q^{-98} +10483 q^{-99} +9150 q^{-100} +522 q^{-101} -7483 q^{-102} -8445 q^{-103} -2518 q^{-104} +4510 q^{-105} +6930 q^{-106} +3639 q^{-107} -1944 q^{-108} -5079 q^{-109} -3758 q^{-110} +121 q^{-111} +3113 q^{-112} +3212 q^{-113} +928 q^{-114} -1549 q^{-115} -2289 q^{-116} -1208 q^{-117} +451 q^{-118} +1356 q^{-119} +1054 q^{-120} +100 q^{-121} -642 q^{-122} -707 q^{-123} -263 q^{-124} +221 q^{-125} +370 q^{-126} +219 q^{-127} -14 q^{-128} -163 q^{-129} -136 q^{-130} -18 q^{-131} +54 q^{-132} +46 q^{-133} +29 q^{-134} -8 q^{-135} -30 q^{-136} -6 q^{-137} +7 q^{-138} + q^{-139} +3 q^{-140} +3 q^{-141} -5 q^{-142} - q^{-143} +3 q^{-144} - q^{-145} </math> |
coloured_jones_6 = |
coloured_jones_7 = |
computer_talk =
<table>
<tr valign=top>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[9, 38]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 6, 2, 7], X[5, 14, 6, 15], X[7, 18, 8, 1], X[15, 8, 16, 9],
X[3, 10, 4, 11], X[9, 4, 10, 5], X[17, 12, 18, 13],
X[11, 16, 12, 17], X[13, 2, 14, 3]]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[9, 38]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 9, -5, 6, -2, 1, -3, 4, -6, 5, -8, 7, -9, 2, -4, 8, -7, 3]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[9, 38]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[6, 10, 14, 18, 4, 16, 2, 8, 12]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[9, 38]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[4, {-1, -1, -2, -2, 3, -2, 1, -2, -3, -3, -2}]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 11}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[9, 38]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[9, 38]]]</nowiki></code></td></tr>
<tr align=left><td></td><td>[[Image:9_38_ML.gif]]</td></tr><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[9, 38]]&) /@ {
SymmetryType, UnknottingNumber, ThreeGenus,
BridgeIndex, SuperBridgeIndex, NakanishiIndex
}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, {2, 3}, 2, 3, {4, 7}, 2}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[9, 38]][t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 5 14 2
19 + -- - -- - 14 t + 5 t
2 t
t</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[9, 38]][z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4
1 + 6 z + 5 z</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 38], Knot[10, 63]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[9, 38]], KnotSignature[Knot[9, 38]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{57, -4}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[9, 38]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -11 3 6 8 10 10 8 7 3 -2
-q + --- - -- + -- - -- + -- - -- + -- - -- + q
10 9 8 7 6 5 4 3
q q q q q q q q</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 38]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[9, 38]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -34 -32 -30 3 2 -22 2 4 -12 2 2
-q + q + q - --- - --- - q + --- + --- + q + --- - -- +
28 24 20 16 10 8
q q q q q q
-6
q</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[9, 38]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 6 8 4 2 6 2 8 2 10 2 4 4 6 4 8 4
4 a - 3 a + a z + 7 a z - a z - a z + a z + 3 a z + a z</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[9, 38]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 6 8 7 9 11 13 4 2 6 2
-4 a - 3 a + 3 a z + a z - a z + a z - a z + 9 a z +
8 2 10 2 12 2 5 3 7 3 9 3
10 a z + 3 a z + 3 a z - 2 a z - 2 a z + 5 a z +
11 3 13 3 4 4 6 4 8 4 10 4
3 a z - 2 a z + a z - 10 a z - 15 a z - 10 a z -
12 4 5 5 7 5 9 5 11 5 13 5
6 a z + 3 a z - 4 a z - 15 a z - 7 a z + a z +
6 6 8 6 10 6 12 6 7 7 9 7
6 a z + 6 a z + 3 a z + 3 a z + 5 a z + 9 a z +
11 7 8 8 10 8
4 a z + 2 a z + 2 a z</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[9, 38]], Vassiliev[3][Knot[9, 38]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{6, -14}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[9, 38]][q, t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -5 -3 1 2 1 4 2 4
q + q + ------ + ------ + ------ + ------ + ------ + ------ +
23 9 21 8 19 8 19 7 17 7 17 6
q t q t q t q t q t q t
4 6 4 4 6 4 4 3
------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- +
15 6 15 5 13 5 13 4 11 4 11 3 9 3 9 2
q t q t q t q t q t q t q t q t
4 3
----- + ----
7 2 5
q t q t</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[9, 38], 2][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -31 3 -29 10 16 5 38 32 27 74 37
q - --- + q + --- - --- - --- + --- - --- - --- + --- - --- -
30 28 27 26 25 24 23 22 21
q q q q q q q q q
57 98 29 77 97 14 74 71 2 50 34
--- + --- - --- - --- + --- - --- - --- + --- + --- - --- + --- +
20 19 18 17 16 15 14 13 12 11 10
q q q q q q q q q q q
7 20 8 3 3 -4
-- - -- + -- + -- - -- + q
9 8 7 6 5
q q q q q</nowiki></code></td></tr>
</table> }}

Latest revision as of 17:05, 1 September 2005

9 37.gif

9_37

9 39.gif

9_39

9 38.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 9 38's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 38 at Knotilus!


Knot presentations

Planar diagram presentation X1627 X5,14,6,15 X7,18,8,1 X15,8,16,9 X3,10,4,11 X9,4,10,5 X17,12,18,13 X11,16,12,17 X13,2,14,3
Gauss code -1, 9, -5, 6, -2, 1, -3, 4, -6, 5, -8, 7, -9, 2, -4, 8, -7, 3
Dowker-Thistlethwaite code 6 10 14 18 4 16 2 8 12
Conway Notation [.2.2.2]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart0.gif

Length is 11, width is 4,

Braid index is 4

9 38 ML.gif 9 38 AP.gif
[{11, 4}, {3, 9}, {4, 2}, {5, 10}, {6, 3}, {8, 5}, {1, 6}, {9, 7}, {2, 8}, {7, 11}, {10, 1}]

[edit Notes on presentations of 9 38]


Three dimensional invariants

Symmetry type Reversible
Unknotting number
3-genus 2
Bridge index 3
Super bridge index
Nakanishi index 2
Maximal Thurston-Bennequin number [-14][3]
Hyperbolic Volume 12.9329
A-Polynomial See Data:9 38/A-polynomial

[edit Notes for 9 38's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -4

[edit Notes for 9 38's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 57, -4 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {10_63,}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (6, -14)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -4 is the signature of 9 38. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-10χ
-3         11
-5        31-2
-7       4  4
-9      43  -1
-11     64   2
-13    44    0
-15   46     -2
-17  24      2
-19 14       -3
-21 2        2
-231         -1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials