The HOMFLY-PT Polynomial: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
m (Reverted edit of NqtE3n, changed back to last version by Drorbn)
 
(7 intermediate revisions by 5 users not shown)
Line 15: Line 15:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{HelpAndAbout|
{{HelpAndAbout|
n = 1 |
n = 2 |
n1 = 2 |
n1 = 3 |
in = <nowiki>HOMFLYPT</nowiki> |
in = <nowiki>HOMFLYPT</nowiki> |
out= <nowiki>HOMFLYPT[K][a, z] computes the HOMFLY-PT (Hoste, Ocneanu, Millett, Freyd, Lickorish, Yetter, Przytycki and Traczyk) polynomial of a knot/link K, in the variables a and z.</nowiki> |
out= <nowiki>HOMFLYPT[K][a, z] computes the HOMFLY-PT (Hoste, Ocneanu, Millett, Freyd, Lickorish, Yetter, Przytycki and Traczyk) polynomial of a knot/link K, in the variables a and z.</nowiki> |
Line 26: Line 26:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{In|
{{In|
n = 3 |
n = 4 |
in = <nowiki>K = Knot[8, 1];</nowiki>}}
in = <nowiki>K = Knot[8, 1];</nowiki>}}
<!--END-->
<!--END-->
Line 33: Line 33:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
{{InOut|
n = 4 |
n = 5 |
in = <nowiki>HOMFLYPT[Knot[8, 1]][a, z]</nowiki> |
in = <nowiki>HOMFLYPT[Knot[8, 1]][a, z]</nowiki> |
out= <nowiki> -2 4 6 2 2 2 4 2
out= <nowiki> -2 4 6 2 2 2 4 2
Line 44: Line 44:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
{{InOut|
n = 5 |
n = 6 |
in = <nowiki>Expand[HOMFLYPT[K][1/q, Sqrt[q]-1/Sqrt[q]]]</nowiki> |
in = <nowiki>Expand[HOMFLYPT[K][1/q, Sqrt[q]-1/Sqrt[q]]]</nowiki> |
out= <nowiki> -6 -5 -4 2 2 2 2
out= <nowiki> -6 -5 -4 2 2 2 2
Line 55: Line 55:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
{{InOut|
n = 6 |
n = 7 |
in = <nowiki>Jones[K][q]</nowiki> |
in = <nowiki>Jones[K][q]</nowiki> |
out= <nowiki> -6 -5 -4 2 2 2 2
out= <nowiki> -6 -5 -4 2 2 2 2
Line 66: Line 66:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
{{InOut|
n = 7 |
n = 8 |
in = <nowiki>{HOMFLYPT[K][1, z], Conway[K][z]}</nowiki> |
in = <nowiki>{HOMFLYPT[K][1, z], Conway[K][z]}</nowiki> |
out= <nowiki> 2 2
out= <nowiki> 2 2
Line 83: Line 83:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{In|
{{In|
n = 8 |
n = 9 |
in = <nowiki>L = Link[5, Alternating, 1];</nowiki>}}
in = <nowiki>L = Link[5, Alternating, 1];</nowiki>}}
<!--END-->
<!--END-->
Line 93: Line 93:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
{{InOut|
n = 9 |
n = 10 |
in = <nowiki>Simplify[{
in = <nowiki>Simplify[{
(-1)^(Length[Skeleton[L]]-1)(q^2+1+1/q^2)HOMFLYPT[L][1/q^3, q-1/q],
(-1)^(Length[Skeleton[L]]-1)(q^2+1+1/q^2)HOMFLYPT[L][1/q^3, q-1/q],
Line 116: Line 116:
{{note|HOMFLY}} J. Hoste, A. Ocneanu, K. Millett, P. Freyd, W. B. R. Lickorish and D. Yetter, ''A new polynomial invariant of knots and links'', Bull. Amer. Math. Soc. '''12''' (1985) 239-246.
{{note|HOMFLY}} J. Hoste, A. Ocneanu, K. Millett, P. Freyd, W. B. R. Lickorish and D. Yetter, ''A new polynomial invariant of knots and links'', Bull. Amer. Math. Soc. '''12''' (1985) 239-246.


{{note|PT}} J. Przytycki and P. Traczyk, <math>Conway Algebras and Skein Equivalence of Links</math>, Proc. Amer. Math. Soc. '''100''' (1987) 744-748.
{{note|PT}} J. Przytycki and P. Traczyk, ''Conway Algebras and Skein Equivalence of Links'', Proc. Amer. Math. Soc. '''100''' (1987) 744-748.

Latest revision as of 19:56, 8 August 2013


The HOMFLY-PT polynomial (see [HOMFLY] and [PT]) of a knot or link is defined by the skein relation

Failed to parse (unknown function "\overcrossing"): {\displaystyle aH\left(\overcrossing\right)-a^{-1}H\left(\undercrossing\right)=zH\left(\smoothing\right) }

and by the initial condition =1.

KnotTheory` knows about the HOMFLY-PT polynomial:

(For In[1] see Setup)

In[2]:= ?HOMFLYPT
HOMFLYPT[K][a, z] computes the HOMFLY-PT (Hoste, Ocneanu, Millett, Freyd, Lickorish, Yetter, Przytycki and Traczyk) polynomial of a knot/link K, in the variables a and z.
In[3]:= HOMFLYPT::about
The HOMFLYPT program was written by Scott Morrison.

Thus, for example, here's the HOMFLY-PT polynomial of the knot 8_1:

In[4]:= K = Knot[8, 1];
In[5]:= HOMFLYPT[Knot[8, 1]][a, z]
Out[5]= -2 4 6 2 2 2 4 2 a - a + a - z - a z - a z

It is well known that HOMFLY-PT polynomial specializes to the Jones polynomial at and and to the Conway polynomial at . Indeed,

In[6]:= Expand[HOMFLYPT[K][1/q, Sqrt[q]-1/Sqrt[q]]]
Out[6]= -6 -5 -4 2 2 2 2 2 + q - q + q - -- + -- - - - q + q 3 2 q q q
In[7]:= Jones[K][q]
Out[7]= -6 -5 -4 2 2 2 2 2 + q - q + q - -- + -- - - - q + q 3 2 q q q
In[8]:= {HOMFLYPT[K][1, z], Conway[K][z]}
Out[8]= 2 2 {1 - 3 z , 1 - 3 z }
8 1.gif
8_1
L5a1.gif
L5a1

In our parametrization of the link invariant, it satisfies

,

where is some knot or link and where is the number of components of . Let us verify this fact for the Whitehead link, L5a1:

In[9]:= L = Link[5, Alternating, 1];
In[10]:= Simplify[{ (-1)^(Length[Skeleton[L]]-1)(q^2+1+1/q^2)HOMFLYPT[L][1/q^3, q-1/q], A2Invariant[L][q] }]
Out[10]= -12 -8 -6 2 -2 2 4 6 {2 - q + q + q + -- + q + q + q + q , 4 q -12 -8 -6 2 -2 2 4 6 2 - q + q + q + -- + q + q + q + q } 4 q

Other Software to Compute the HOMFLY-PT Polynomial

A C-based program running under windows by M. Ochiai can compute the HOMFLY-PT polynomial of certain knots and links with up to hundreds of crossings using "base tangle decompositions". His program, bTd, is available at [1].

References

[HOMFLY] ^  J. Hoste, A. Ocneanu, K. Millett, P. Freyd, W. B. R. Lickorish and D. Yetter, A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. 12 (1985) 239-246.

[PT] ^  J. Przytycki and P. Traczyk, Conway Algebras and Skein Equivalence of Links, Proc. Amer. Math. Soc. 100 (1987) 744-748.