Three Dimensional Invariants: Difference between revisions
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 4: | Line 4: | ||
<!--$$?SymmetryType$$--> |
<!--$$?SymmetryType$$--> |
||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{{HelpAndAbout1|n=2|s=SymmetryType}} |
|||
SymmetryType[K] returns the symmetry type of the knot K, if known to KnotTheory`. The possible types are: Reversible, FullyAmphicheiral, NegativeAmphicheiral and Chiral. |
|||
{{HelpAndAbout2|n=3|s=SymmetryType}} |
|||
The symmetry type data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/. |
|||
{{HelpAndAbout3}} |
|||
<!--END--> |
<!--END--> |
||
Line 9: | Line 15: | ||
<!--$$?UnknottingNumber$$--> |
<!--$$?UnknottingNumber$$--> |
||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{{HelpAndAbout1|n=4|s=UnknottingNumber}} |
|||
UnknottingNumber[K] returns the unknotting number of the knot K, if known to KnotTheory`. If only a range of possible values is known, a list of the form {min, max} is returned. |
|||
{{HelpAndAbout2|n=5|s=UnknottingNumber}} |
|||
The unknotting numbers of torus knots are due to ???. All other unknotting numbers known to KnotTheory` are taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/. |
|||
{{HelpAndAbout3}} |
|||
<!--END--> |
<!--END--> |
||
Revision as of 22:40, 24 August 2005
(For In[1] see Setup)
In[2]:= ?SymmetryType
SymmetryType[K] returns the symmetry type of the knot K, if known to KnotTheory`. The possible types are: Reversible, FullyAmphicheiral, NegativeAmphicheiral and Chiral. |
In[3]:= SymmetryType::about
The symmetry type data known to KnotTheory` is taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/. |
The unknotting number of a knot is the minimal number of crossing changes needed in order to unknot .
In[4]:= ?UnknottingNumber
UnknottingNumber[K] returns the unknotting number of the knot K, if known to KnotTheory`. If only a range of possible values is known, a list of the form {min, max} is returned. |
In[5]:= UnknottingNumber::about
The unknotting numbers of torus knots are due to ???. All other unknotting numbers known to KnotTheory` are taken from Charles Livingston's "Table of Knot Invariants", http://www.indiana.edu/~knotinfo/. |
Of the <*UH /. _u -> 1*> knots whose unknotting number is known to {\tt
KnotTheory`}, <*Coefficient[UH, u[1]]*> have unknotting number 1,
<*Coefficient[UH, u[2]]*> have unknotting number 2, <*Coefficient[UH,
u[3]]*> have unknotting number 3, <*Coefficient[UH, u[4]]*> have
unknotting number 4 and <*Coefficient[UH, u[5]]*> has unknotting number
5:
<*InOut@"Plus @@ u /@ Cases[UnknottingNumber /@ AllKnots[], _Integer]"*>
There are <*Length[
Select[AllKnots[], Crossings[#] <= 9 && Head[UnknottingNumber[#]] === List &]
]*> knots with up to 9 crossings whose unknotting number is unknown:
<*InOut@"Select[AllKnots[], Crossings[#] <= 9 && Head[UnknottingNumber[#]] === L ist &]"*>
\index{Livingston, Charles} <* HelpBox[ThreeGenus] *>
\index{Bridge index} The {\em bridge index} of a knot $K$ is the minimal number of local maxima (or local minima) in a generic smooth embedding of $K$ in $\bbR^3$.
\index{Livingston, Charles} <* HelpBox[BridgeIndex] *>
An often studied class of knots is the class of 2-bridge knots, knots whose bridge index is 2. Of the 49 9-crossings knots, 24 are 2-bridge:
<*InOut@"Select[AllKnots[], Crossings[#] == 9 && BridgeIndex[#] == 2 &]"*>
\index{Super bridge index} The {\em super bridge index} of a knot $K$ is the minimal number, in a generic smooth embedding of $K$ in $\bbR^3$, of the maximal number of local maxima (or local minima) in a rigid rotation of that projection.
\index{Livingston, Charles} <* HelpBox[SuperBridgeIndex] *>
\index{Livingston, Charles} <* HelpBox[NakanishiIndex] *>
<*InOut@"Profile[K_] := Profile[\n
SymmetryType[K], UnknottingNumber[K], ThreeGenus[K]\n BridgeIndex[K], SuperBridgeIndex[K], NakanishiIndex[K]\n
]"*> <*InOut@"Profile[Knot[9,24]]"*> <*InOut@"Ks = Select[\n
AllKnots[],\n (Crossings[#] == 9 && Profile[#]==Profile[Knot[9,24]])&\n
]"*> <*InOut@"Alexander[#][t]& /@ Ks"*>