Torus Knot Splice Base: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
No edit summary |
No edit summary |
||
Line 7: | Line 7: | ||
{{TorusKnotsNavigation|<*PreviousKnot*>|<*NextKnot*>}} |
{{TorusKnotsNavigation|<*PreviousKnot*>|<*NextKnot*>}} |
||
{| style="width: 20%; float: right;" | |
|||
{{:Further <*ThisKnot*> views}} |
|||
| |
|||
<center> |
|||
[[Image:{{Data:7_5/Previous Knot}}.gif|60px]] |
|||
[[{{Data:7_5/Previous Knot}}]] |
|||
[[Planar Diagrams|Planar Diagram]]: <* PD[K] *> |
|||
</center> |
|||
| |
|||
<center> |
|||
[[Image:{{Data:7_5/Next Knot}}.gif|60px]] |
|||
[[{{Data:7_5/Next Knot}}]] |
|||
<table border=0><tr align=center> |
|||
<td> |
|||
<a href="../Manual/TubePlot.html"><img src="<*m*>.<*n*>_240.jpg" |
|||
border=0 alt="T(<*m*>,<*n*>)"><br><font size=-2>TubePlot</font></a> |
|||
</td> |
|||
<td> |
|||
<h1> The <*m(n-1)*>-Crossing Torus Knot T(<*m*>,<*n*>)</h1> |
|||
<*Include["$knotaka.html"]*> |
|||
<p>Visit <a class=external |
|||
href="<*KnotilusURL[K=TorusKnot[m, n]]*>">T(<*m*>,<*n*>)'s |
|||
page</a> at <a class=external |
|||
href="http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/html/start.html">Kno |
|||
tilus</a>! |
|||
<p><a href="../Manual/Acknowledgement.html">Acknowledgement</a> |
|||
</td> |
|||
</tr></table> |
|||
<p><table><tr align=left valign=top> |
|||
<td><a href="../Manual/GaussCode.html">Gauss Code</a>: </td> |
|||
<td><em><*List @@ GaussCode[K]*></em></td> |
|||
</tr></table> |
|||
<p><table><tr align=left valign=top> |
|||
<td><a href="../Manual/BR.html">Braid Representative</a>: </td> |
|||
<td> </td> |
|||
<td> |
|||
<* BraidPlot[CollapseBraid[BR[K]], Mode -> "HTML"] *> |
|||
</td> |
|||
</tr></table> |
|||
<p><table><tr align=left valign=top> |
|||
<td><a href="../Manual/AlexanderConway.html">Alexander Polynomial</a>: |
|||
</td> |
|||
<td><em><*PolyPrint[alex = Alexander[K][t], t]*></em></td> |
|||
</tr></table> |
|||
<p><table><tr align=left valign=top> |
|||
<td><a href="../Manual/AlexanderConway.html">Conway Polynomial</a>: </td> |
|||
<td><em><*PolyPrint[Conway[K][z], z]*></em></td> |
|||
</tr></table> |
|||
<p><table><tr align=left valign=top> |
|||
<td>Other knots with the same <a |
|||
href="../Manual/AlexanderConway.html">Alexander/Conway Polynomial</a>: |
|||
</td> |
|||
<td><em>{<* |
|||
others = |
|||
DeleteCases[Select[AllKnots[], (alex === Alexander[#][t])&], |
|||
Knot[n,Type,k]]; |
|||
If[others === {}, "", |
|||
StringJoin[(ToString[#, FormatType -> HTMLForm]<>", ")& /@ others] |
|||
] |
|||
*>...}</em></td> |
|||
</tr></table> |
|||
<p><table><tr align=left valign=top> |
|||
<td> |
|||
<a href="../Manual/DetAndSignature.html">Determinant and Signature</a>: |
|||
</td> |
|||
<td><em><*{KnotDet[K], s=KnotSignature[K]}*></em></td> |
|||
</tr></table> |
|||
<p><table><tr align=left valign=top> |
|||
<td><a href="../Manual/Jones.html">Jones Polynomial</a>: |
|||
</td> |
|||
<td><em><*PolyPrint[J = Jones[K][q], q]*></em></td> |
|||
</tr></table> |
|||
<p><table><tr align=left valign=top> |
|||
<td>Other knots (up to mirrors) with the same <a |
|||
href="../Manual/Jones.html">Jones Polynomial</a>: |
|||
</td> |
|||
<td><em>{<* |
|||
others = |
|||
DeleteCases[Select[AllKnots[], |
|||
(J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])& |
|||
], Knot[n,Type,k]]; |
|||
If[others === {}, "", |
|||
StringJoin[(ToString[#, FormatType -> HTMLForm]<>", ")& /@ others] |
|||
] |
|||
*>...}</em></td> |
|||
</tr></table> |
|||
<* If[Crossings[K]<=18, Include["ColouredJones.mhtml"] ,""] *> |
|||
<p><table><tr align=left valign=top> |
|||
<td><a href="../Manual/A2Invariant.html">A2 (sl(3)) Invariant</a>: |
|||
</td> |
|||
<td><em><*PolyPrint[A2Invariant[K][q], q]*></em></td> |
|||
</tr></table> |
|||
<p><table><tr align=left valign=top> |
|||
<td><a href="../Manual/Kauffman.html">Kauffman Polynomial</a>: |
|||
</td> |
|||
<td><em><*PolyPrint[Kauffman[K][a, z], {a, z}]*></em></td> |
|||
</tr></table> |
|||
<p><table><tr align=left valign=top> |
|||
<td><a href="../Manual/Vassiliev.html">V<sub>2</sub> and |
|||
V<sub>3</sub>, the type 2 and 3 Vassiliev invariants</a>: </td> |
|||
<td><em><* {Vassiliev[2][K], Vassiliev[3][K]} *></em></td> |
|||
</tr></table> |
|||
<p><a href="../Manual/KhovanovHomology.html">Khovanov Homology</a>. |
|||
The coefficients of the monomials <em>t<sup>r</sup>q<sup>j</sup></em> |
|||
are shown, along with their alternating sums χ (fixed <em>j</em>, |
|||
alternation over <em>r</em>). |
|||
The squares with <font class=HLYellow>yellow</font> highlighting |
|||
are those on the "critical diagonals", where <em>j-2r=s+1</em> or |
|||
<em>j-2r=s+1</em>, where <em>s=<*s*></em> is the signature of |
|||
T(<*m*>,<*n*>). Nonzero entries off the critical diagonals (if |
|||
any exist) are highlighted in <font class=HLRed>red</font>. |
|||
<br><center> |
|||
<*TabularKh[Kh[K][q, t], s+{1,-1}]*> |
|||
</center> |
</center> |
||
|} |
|||
{{Knot Site Links|n=7|k=5}} |
|||
<* ComputerTalkHeader *> |
|||
<*GraphicsBox["`1`.`2`_240.jpg", "TubePlot[TorusKnot[`1`, `2`]]", m, n]*> |
|||
<*InOut["Crossings[``]", K]*> |
|||
<*InOut["PD[``]", K]*> |
|||
<*InOut["GaussCode[``]", K]*> |
|||
<*InOut["BR[``]", K]*> |
|||
<*InOut["alex = Alexander[``][t]", K]*> |
|||
<*InOut["Conway[``][z]", K]*> |
|||
<*InOut["Select[AllKnots[], (alex === Alexander[#][t])&]"]*> |
|||
<*InOut["{KnotDet[`1`], KnotSignature[`1`]}", K]*> |
|||
<*InOut["J=Jones[``][q]", K]*> |
|||
<*InOut[ |
|||
"Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]" |
|||
]*> |
|||
<* If[Crossings[K]<=18, Include["ColouredJonesM.mhtml"] ,""] *> |
|||
<*InOut["A2Invariant[``][q]", K]*> |
|||
<*InOut["Kauffman[``][a, z]", K]*> |
|||
<*InOut["{Vassiliev[2][`1`], Vassiliev[3][`1`]}", K ]*> |
|||
<*InOut["Kh[``][q, t]", K]*> |
|||
</table> |
|||
<p><hr><p> |
|||
<table valign=center width=100% border=0><tr> |
|||
<td align=left> |
|||
<a href="/~drorbn/">Dror Bar-Natan</a>: |
|||
<a href="../index.html">The Knot Atlas</a>: |
|||
<a href="index.html">Torus Knots</a>: |
|||
<a href="#top">The Torus Knot T(<*m*>,<*n*>)</a> |
|||
</td> |
|||
<td align=right> |
|||
<table border=0><tr> |
|||
<td align=center> |
|||
<a href="<*prevm*>.<*prevn*>.html"><img border=0 |
|||
width=120 height=120 src="<*prevm*>.<*prevn*>_120.jpg" |
|||
alt="T(<*prevm*>,<*prevn*>)"><br>T(<*prevm*>,<*prevn*>)</a> |
|||
</td><td align=center> |
|||
<a href="<*nextm*>.<*nextn*>.html"><img border=0 |
|||
width=120 height=120 src="<*nextm*>.<*nextn*>_120.jpg" |
|||
alt="T(<*nextm*>,<*nextn*>)"><br>T(<*nextm*>,<*nextn*>)</a> |
|||
</td> |
|||
</tr></table> |
|||
</td> |
|||
</tr></table> |
|||
{{Knot Presentations|name=7_5}} |
|||
</body> |
|||
===[[Three Dimensional Invariants|Three dimensional invariants]]=== |
|||
</html> |
|||
{| |
|||
| Symmetry type |
|||
| {{Data:7_5/Symmetry Type}} |
|||
|- |
|||
| Unknotting number |
|||
| {{Data:7_5/Unknotting Number}} |
|||
|- |
|||
| 3-genus |
|||
| {{Data:7_5/3-Genus}} |
|||
|- |
|||
| Bridge index (super bridge index) |
|||
| {{Data:7_5/Bridge Index}} ({{Data:7_5/Super Bridge Index}}) |
|||
|- |
|||
| Nakanishi index |
|||
| {{Data:7_5/Nakanishi Index}} |
|||
|} |
|||
{{Polynomial Invariants|name=7_5}} |
|||
{{Vassiliev Invariants|name=7_5}} |
|||
{{Khovanov Invariants|name=7_5}} |
|||
{{Quantum Invariants|name=7_5}} |
Revision as of 21:00, 25 August 2005
Previous: [[<*PreviousKnot*>]]; Next: [[<*NextKnot*>]]
|
|
Visit Torus Knot Splice Base's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit [{{{KnotilusURL}}} Torus Knot Splice Base's page] at Knotilus!
Visit Torus Knot Splice Base's page at the original Knot Atlas!
Knot presentations
Three dimensional invariants
Symmetry type | Reversible |
Unknotting number | 2 |
3-genus | 2 |
Bridge index (super bridge index) | 2 (4) |
Nakanishi index | 1 |
Polynomial invariants
Vassiliev invariants
V2 and V3: | (Data:Torus Knot Splice Base/V 2, Data:Torus Knot Splice Base/V 3) |
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.