"Rubberband" Brunnian Links: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 49: Line 49:


<!--$$Jones[RBB3][q]$$-->
<!--$$Jones[RBB3][q]$$-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
n = 5 |
in = <nowiki>Jones[RBB3][q]</nowiki> |
out= <nowiki> 2 3 4 5 7 8 9 10
-q + 5 q - 11 q + 14 q - 10 q + 11 q - 18 q + 24 q - 18 q +
11 13 14 15 16 17
11 q - 10 q + 14 q - 11 q + 5 q - q</nowiki>}}
<!--END-->
<!--END-->


Line 54: Line 63:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{Graphics|
{{Graphics|
n = 6 |
n = 7 |
in = <nowiki>DrawMorseLink[RBB4=RubberBandBrunnian[4]]</nowiki> |
in = <nowiki>DrawMorseLink[RBB4=RubberBandBrunnian[4]]</nowiki> |
img= Rubberband Brunnian Links_Out_5.gif |
img= Rubberband Brunnian Links_Out_6.gif |
out= <nowiki>-Graphics-</nowiki>}}
out= <nowiki>-Graphics-</nowiki>}}
<!--END-->
<!--END-->


<!--$$Jones[RBB4][q]$$-->
<!--$$Jones[RBB4][q]$$-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
n = 8 |
in = <nowiki>Jones[RBB4][q]</nowiki> |
out= <nowiki> 3/2 5/2 7/2 9/2 11/2 13/2 15/2
-q + 7 q - 24 q + 49 q - 56 q + 18 q + 51 q -
17/2 19/2 21/2 23/2 25/2 27/2
111 q + 131 q - 100 q + 32 q + 32 q - 100 q +
29/2 31/2 33/2 35/2 37/2 39/2
131 q - 111 q + 51 q + 18 q - 56 q + 49 q -
41/2 43/2 45/2
24 q + 7 q - q</nowiki>}}
<!--END-->
<!--END-->


Line 66: Line 90:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{Graphics|
{{Graphics|
n = 8 |
n = 10 |
in = <nowiki>DrawMorseLink[RBB5=RubberBandBrunnian[5]]</nowiki> |
in = <nowiki>DrawMorseLink[RBB5=RubberBandBrunnian[5]]</nowiki> |
img= Rubberband Brunnian Links_Out_7.gif |
img= Rubberband Brunnian Links_Out_9.gif |
out= <nowiki>-Graphics-</nowiki>}}
out= <nowiki>-Graphics-</nowiki>}}
<!--END-->
<!--END-->


<!--$$Jones[RBB5][q]$$-->
<!--$$Jones[RBB5][q]$$-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
n = 11 |
in = <nowiki>Jones[RBB5][q]</nowiki> |
out= <nowiki> 2 3 4 5 6 7 8 9
-q + 9 q - 40 q + 110 q - 189 q + 167 q + 57 q - 414 q +
10 11 12 13 14 15 16
660 q - 581 q + 189 q + 305 q - 672 q + 816 q - 672 q +
17 18 19 20 21 22 23
305 q + 189 q - 581 q + 660 q - 414 q + 57 q + 167 q -
24 25 26 27 28
189 q + 110 q - 40 q + 9 q - q</nowiki>}}
<!--END-->
<!--END-->


Line 97: Line 136:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{In|
{{In|
n = 10 |
n = 12 |
in = <nowiki>SubLink[pd_PD, js_List] := Module[
in = <nowiki>SubLink[pd_PD, js_List] := Module[
{k, t0, t, t1, t2, S, P},
{k, t0, t, t1, t2, S, P},
Line 121: Line 160:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{In|
{{In|
n = 11 |
n = 13 |
in = <nowiki>S = SubLink[RubberBandBrunnian[5], {1, 2, 3, 4}];</nowiki>}}
in = <nowiki>S = SubLink[RubberBandBrunnian[5], {1, 2, 3, 4}];</nowiki>}}
<!--END-->
<!--END-->
Line 128: Line 167:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
{{InOut|
n = 12 |
n = 14 |
in = <nowiki>J=Factor[Jones[S][q]]</nowiki> |
in = <nowiki>J=Factor[Jones[S][q]]</nowiki> |
out= <nowiki> 6 3
out= <nowiki> 6 3
Line 148: Line 187:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{In|
{{In|
n = 13 |
n = 15 |
in = <nowiki>BR /: Inverse[BR[n_, l_List]] := BR[n, -Reverse[l]];
in = <nowiki>BR /: Inverse[BR[n_, l_List]] := BR[n, -Reverse[l]];
BR /: BR[n1_, l1_] ** BR[n2_, l2_] := BR[Max[n1, n2], Join[l1, l2]];
BR /: BR[n1_, l1_] ** BR[n2_, l2_] := BR[Max[n1, n2], Join[l1, l2]];
Line 170: Line 209:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{In|
{{In|
n = 14 |
n = 16 |
in = <nowiki>DeleteStrand[k_, BR[n_, l_List]] := BR[n - 1, DeleteStrand[k, l]];
in = <nowiki>DeleteStrand[k_, BR[n_, l_List]] := BR[n - 1, DeleteStrand[k, l]];
DeleteStrand[k_, {}] = {};
DeleteStrand[k_, {}] = {};
Line 186: Line 225:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{Graphics|
{{Graphics|
n = 16 |
n = 18 |
in = <nowiki>(b = BrunnianBraid[4]) // BraidPlot </nowiki> |
in = <nowiki>(b = BrunnianBraid[4]) // BraidPlot </nowiki> |
img= Rubberband Brunnian Links_Out_15.gif |
img= Rubberband Brunnian Links_Out_17.gif |
out= <nowiki>-Graphics-</nowiki>}}
out= <nowiki>-Graphics-</nowiki>}}
<!--END-->
<!--END-->
Line 195: Line 234:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
{{InOut|
n = 17 |
n = 19 |
in = <nowiki>Jones[b][q]</nowiki> |
in = <nowiki>Jones[b][q]</nowiki> |
out= <nowiki> -(11/2) 4 6 5 5 1 3/2
out= <nowiki> -(11/2) 4 6 5 5 1 3/2
Line 209: Line 248:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{Graphics|
{{Graphics|
n = 19 |
n = 21 |
in = <nowiki>(bb = DeleteStrand[4, b]) // BraidPlot</nowiki> |
in = <nowiki>(bb = DeleteStrand[4, b]) // BraidPlot</nowiki> |
img= Rubberband Brunnian Links_Out_18.gif |
img= Rubberband Brunnian Links_Out_20.gif |
out= <nowiki>-Graphics-</nowiki>}}
out= <nowiki>-Graphics-</nowiki>}}
<!--END-->
<!--END-->
Line 218: Line 257:
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
{{InOut|
n = 20 |
n = 22 |
in = <nowiki>Jones[#][q] & /@ {bb, BR[3, {}]}</nowiki> |
in = <nowiki>Jones[#][q] & /@ {bb, BR[3, {}]}</nowiki> |
out= <nowiki> 1 1
out= <nowiki> 1 1

Revision as of 13:53, 12 October 2007


A "Rubberband" Brunnian link is obtained by connecting unknots in a closed chain as illustrated in the diagram of the 10-component link, where the last knot gets connected to the first one.

The Rubberband link with 10 components Brunnian Link Example.PNG

If we number the strands in one section of the link as shown and proceed with numbering each following section in the same manner, we can get its PD form. The PD of any "Rubberband" link can be generated in this way by varying the desired number of components:

(For In[1] see Setup)

In[1]:= K0 = PD[X[1, 10, 5, 12], X[2, 12, 6, 14], X[5, 11, 8, 13], X[6, 13, 9, 15], X[10, 0, 16, 4], X[11, 4, 17, 8], X[14, 7, 19, 3], X[15, 9, 18, 7]];
In[2]:= RubberBandBrunnian[n_] := Join @@ Table[K0 /. j_Integer :> j + 16 k, {k, 0, n - 1}] /. {16 n -> 0, 16 n + 1 -> 1, 16 n + 2 -> 2, 16 n + 3 -> 3}

For instance, let us draw the links with three, four, and five components and compute their Jones polynomials:

In[4]:= DrawMorseLink[RBB3=RubberBandBrunnian[3]]
Rubberband Brunnian Links Out 3.gif
Out[4]= -Graphics-
In[5]:= Jones[RBB3][q]
Out[5]= 2 3 4 5 7 8 9 10 -q + 5 q - 11 q + 14 q - 10 q + 11 q - 18 q + 24 q - 18 q + 11 13 14 15 16 17 11 q - 10 q + 14 q - 11 q + 5 q - q
In[7]:= DrawMorseLink[RBB4=RubberBandBrunnian[4]]
Rubberband Brunnian Links Out 6.gif
Out[7]= -Graphics-
In[8]:= Jones[RBB4][q]
Out[8]= 3/2 5/2 7/2 9/2 11/2 13/2 15/2 -q + 7 q - 24 q + 49 q - 56 q + 18 q + 51 q - 17/2 19/2 21/2 23/2 25/2 27/2 111 q + 131 q - 100 q + 32 q + 32 q - 100 q + 29/2 31/2 33/2 35/2 37/2 39/2 131 q - 111 q + 51 q + 18 q - 56 q + 49 q - 41/2 43/2 45/2 24 q + 7 q - q
In[10]:= DrawMorseLink[RBB5=RubberBandBrunnian[5]]
Rubberband Brunnian Links Out 9.gif
Out[10]= -Graphics-
In[11]:= Jones[RBB5][q]
Out[11]= 2 3 4 5 6 7 8 9 -q + 9 q - 40 q + 110 q - 189 q + 167 q + 57 q - 414 q + 10 11 12 13 14 15 16 660 q - 581 q + 189 q + 305 q - 672 q + 816 q - 672 q + 17 18 19 20 21 22 23 305 q + 189 q - 581 q + 660 q - 414 q + 57 q + 167 q - 24 25 26 27 28 189 q + 110 q - 40 q + 9 q - q

We can also check that when one component is removed the remaining link is trivial:

In[12]:= SubLink[pd_PD, js_List] := Module[ {k, t0, t, t1, t2, S, P}, t0 = Flatten[List @@@ Skeleton[pd][[js]]]; t = pd /. x_X :> Select[x, MemberQ[t0, #] &]; t = DeleteCases[t, X[]]; k = 1; While[ k <= Length[t], If[ Length[t[[k]]] < 4, t = Delete[t, k] /. (Rule @@ t[[k]]), ++k]; ]; t1 = List @@ Union @@ t; t2 = Thread[(t1) -> Range[Length[t1]]]; S = t /. t2; P = If[S != PD[] && Length[S] >= 3, S, PD[Knot[0, 1]], S] ]; SubLink[pd_PD, j_] := SubLink[pd, {j}]; SubLink[L_, js_] := SubLink[PD[L], js];
In[13]:= S = SubLink[RubberBandBrunnian[5], {1, 2, 3, 4}];
In[14]:= J=Factor[Jones[S][q]]
Out[14]= 6 3 -(q (1 + q) )

Brunnian Braids

Similarly, in the case of Brunnian braids, removing one strand gives us a trivial braid. We can verify that using the following two programs. The first one constructs a Brunnian braid while the second one removes a selected strand:

In[15]:= BR /: Inverse[BR[n_, l_List]] := BR[n, -Reverse[l]]; BR /: BR[n1_, l1_] ** BR[n2_, l2_] := BR[Max[n1, n2], Join[l1, l2]]; BrunnianBraid[2] = BR[2, {1, 1}]; BrunnianBraid[n_] /; n > 2 := Module[ {b0}, b0 = BrunnianBraid[n - 1]; ((b0 ** BR[n, {n - 1, n - 1}]) ** Inverse[b0]) ** BR[n, {1 - n, 1 - n}] ]
In[16]:= DeleteStrand[k_, BR[n_, l_List]] := BR[n - 1, DeleteStrand[k, l]]; DeleteStrand[k_, {}] = {}; DeleteStrand[k_, {j1_, js___}] := Which[ k < Abs[j1], {j1 - Sign[j1]}~Join~DeleteStrand[k, {js}], k == Abs[j1], DeleteStrand[k + 1, {js}], k == Abs[j1] + 1, DeleteStrand[k - 1, {js}], k > Abs[j1] + 1, {j1}~Join~DeleteStrand[k, {js}] ]

Testing for the Brunnian braid with four strands, we get:

In[18]:= (b = BrunnianBraid[4]) // BraidPlot
Rubberband Brunnian Links Out 17.gif
Out[18]= -Graphics-
In[19]:= Jones[b][q]
Out[19]= -(11/2) 4 6 5 5 1 3/2 -q + ---- - ---- + ---- - ---- - ------- - Sqrt[q] - 5 q + 9/2 7/2 5/2 3/2 Sqrt[q] q q q q 5/2 7/2 9/2 11/2 5 q - 6 q + 4 q - q
In[21]:= (bb = DeleteStrand[4, b]) // BraidPlot
Rubberband Brunnian Links Out 20.gif
Out[21]= -Graphics-
In[22]:= Jones[#][q] & /@ {bb, BR[3, {}]}
Out[22]= 1 1 {2 + - + q, 2 + - + q} q q