Heegaard Floer Knot Homology: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 7: | Line 7: | ||
<!--$$?HFKHat$$--> |
<!--$$?HFKHat$$--> |
||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{HelpAndAbout| |
|||
n = 1 | |
|||
n1 = 2 | |
|||
in = <nowiki>HFKHat</nowiki> | |
|||
out= <nowiki>HFKHat[K][t,m] returns the Poincare polynomial of the Heegaard-Floer Knot Homology (hat version) of the knot K, in the Alexander variable t and the Maslov variable m.</nowiki> | |
|||
about= <nowiki>The Heegaard-Floer Knot Homology program was written by Jean-Marie Droz in 2007 at the University of Zurich, based on methods of Anna Beliakova's arXiv:07050669.</nowiki>}} |
|||
<!--END--> |
<!--END--> |
||
Line 14: | Line 19: | ||
<!--$$hfk = HFKHat[K = Knot[8, 19]][t, m]$$--> |
<!--$$hfk = HFKHat[K = Knot[8, 19]][t, m]$$--> |
||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{InOut| |
|||
n = 3 | |
|||
in = <nowiki>hfk = HFKHat[K = Knot[8, 19]][t, m]</nowiki> | |
|||
out= <nowiki> 2 -3 m 5 2 6 3 |
|||
m + t + -- + m t + m t |
|||
2 |
|||
t</nowiki>}} |
|||
<!--END--> |
<!--END--> |
||
<!--$${hfk /. m -> -1, Alexander[K][t]}$$--> |
<!--$${hfk /. m -> -1, Alexander[K][t]}$$--> |
||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{InOut| |
|||
n = 4 | |
|||
in = <nowiki>{hfk /. m -> -1, Alexander[K][t]}</nowiki> | |
|||
out= <nowiki> -3 -2 2 3 -3 -2 2 3 |
|||
{1 + t - t - t + t , 1 + t - t - t + t }</nowiki>}} |
|||
<!--END--> |
<!--END--> |
||
Line 26: | Line 41: | ||
<!--$$Select[AllKnots[{3, 8}], (Head[HFKHat[#][t, 1/t]] == Plus) &]$$--> |
<!--$$Select[AllKnots[{3, 8}], (Head[HFKHat[#][t, 1/t]] == Plus) &]$$--> |
||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{InOut| |
|||
n = 5 | |
|||
in = <nowiki>Select[AllKnots[{3, 8}], (Head[HFKHat[#][t, 1/t]] == Plus) &]</nowiki> | |
|||
out= <nowiki>{Knot[8, 19]}</nowiki>}} |
|||
<!--END--> |
<!--END--> |
||
<!--$$hfk /. m -> 1/t$$--> |
<!--$$hfk /. m -> 1/t$$--> |
||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{InOut| |
|||
n = 6 | |
|||
in = <nowiki>hfk /. m -> 1/t</nowiki> | |
|||
out= <nowiki>4 -2 |
|||
-- + t |
|||
3 |
|||
t</nowiki>}} |
|||
<!--END--> |
<!--END--> |
Revision as of 11:25, 3 December 2007
In 2007, Jean-Marie Droz of the University of Zurich (working along with Anna Beliakova) wrote a Python program to compute the (hat-version) Heegaard-Floer Knot Homology of a knot . His program is integrated into KnotTheory`
, though to run it, you must have Python as well as the Python library Psycho installed on your system.
(For In[1] see Setup)
|
|
The Heegaard-Floer Knot Homology is a categorification of the Alexander polynomial. Let us test that for the knot 8_19:
In[3]:=
|
hfk = HFKHat[K = Knot[8, 19]][t, m]
|
Out[3]=
|
2 -3 m 5 2 6 3
m + t + -- + m t + m t
2
t
|
In[4]:=
|
{hfk /. m -> -1, Alexander[K][t]}
|
Out[4]=
|
-3 -2 2 3 -3 -2 2 3
{1 + t - t - t + t , 1 + t - t - t + t }
|
The knot 8_19 is the first knot in the Rolfsen Knot Table whose Heegaard-Floer Knot Homology is not "diagonal". Let us test that. The homology is "on diagonal", iff its Poincare polynomial, evaluated at , is a monomial:
In[5]:=
|
Select[AllKnots[{3, 8}], (Head[HFKHat[#][t, 1/t]] == Plus) &]
|
Out[5]=
|
{Knot[8, 19]}
|
In[6]:=
|
hfk /. m -> 1/t
|
Out[6]=
|
4 -2
-- + t
3
t
|