Heegaard Floer Knot Homology: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 7: Line 7:
<!--$$?HFKHat$$-->
<!--$$?HFKHat$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{HelpAndAbout|

n = 1 |
n1 = 2 |
in = <nowiki>HFKHat</nowiki> |
out= <nowiki>HFKHat[K][t,m] returns the Poincare polynomial of the Heegaard-Floer Knot Homology (hat version) of the knot K, in the Alexander variable t and the Maslov variable m.</nowiki> |
about= <nowiki>The Heegaard-Floer Knot Homology program was written by Jean-Marie Droz in 2007 at the University of Zurich, based on methods of Anna Beliakova's arXiv:07050669.</nowiki>}}
<!--END-->
<!--END-->


Line 14: Line 19:
<!--$$hfk = HFKHat[K = Knot[8, 19]][t, m]$$-->
<!--$$hfk = HFKHat[K = Knot[8, 19]][t, m]$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|

n = 3 |
in = <nowiki>hfk = HFKHat[K = Knot[8, 19]][t, m]</nowiki> |
out= <nowiki> 2 -3 m 5 2 6 3
m + t + -- + m t + m t
2
t</nowiki>}}
<!--END-->
<!--END-->


<!--$${hfk /. m -> -1, Alexander[K][t]}$$-->
<!--$${hfk /. m -> -1, Alexander[K][t]}$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|

n = 4 |
in = <nowiki>{hfk /. m -> -1, Alexander[K][t]}</nowiki> |
out= <nowiki> -3 -2 2 3 -3 -2 2 3
{1 + t - t - t + t , 1 + t - t - t + t }</nowiki>}}
<!--END-->
<!--END-->


Line 26: Line 41:
<!--$$Select[AllKnots[{3, 8}], (Head[HFKHat[#][t, 1/t]] == Plus) &]$$-->
<!--$$Select[AllKnots[{3, 8}], (Head[HFKHat[#][t, 1/t]] == Plus) &]$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|

n = 5 |
in = <nowiki>Select[AllKnots[{3, 8}], (Head[HFKHat[#][t, 1/t]] == Plus) &]</nowiki> |
out= <nowiki>{Knot[8, 19]}</nowiki>}}
<!--END-->
<!--END-->


<!--$$hfk /. m -> 1/t$$-->
<!--$$hfk /. m -> 1/t$$-->
<!--Robot Land, no human edits to "END"-->
<!--Robot Land, no human edits to "END"-->
{{InOut|

n = 6 |
in = <nowiki>hfk /. m -> 1/t</nowiki> |
out= <nowiki>4 -2
-- + t
3
t</nowiki>}}
<!--END-->
<!--END-->

Revision as of 11:25, 3 December 2007


In 2007, Jean-Marie Droz of the University of Zurich (working along with Anna Beliakova) wrote a Python program to compute the (hat-version) Heegaard-Floer Knot Homology of a knot . His program is integrated into KnotTheory`, though to run it, you must have Python as well as the Python library Psycho installed on your system.

(For In[1] see Setup)

In[1]:= ?HFKHat
HFKHat[K][t,m] returns the Poincare polynomial of the Heegaard-Floer Knot Homology (hat version) of the knot K, in the Alexander variable t and the Maslov variable m.
In[2]:= HFKHat::about
The Heegaard-Floer Knot Homology program was written by Jean-Marie Droz in 2007 at the University of Zurich, based on methods of Anna Beliakova's arXiv:07050669.

The Heegaard-Floer Knot Homology is a categorification of the Alexander polynomial. Let us test that for the knot 8_19:

In[3]:= hfk = HFKHat[K = Knot[8, 19]][t, m]
Out[3]= 2 -3 m 5 2 6 3 m + t + -- + m t + m t 2 t
In[4]:= {hfk /. m -> -1, Alexander[K][t]}
Out[4]= -3 -2 2 3 -3 -2 2 3 {1 + t - t - t + t , 1 + t - t - t + t }

The knot 8_19 is the first knot in the Rolfsen Knot Table whose Heegaard-Floer Knot Homology is not "diagonal". Let us test that. The homology is "on diagonal", iff its Poincare polynomial, evaluated at , is a monomial:

In[5]:= Select[AllKnots[{3, 8}], (Head[HFKHat[#][t, 1/t]] == Plus) &]
Out[5]= {Knot[8, 19]}
In[6]:= hfk /. m -> 1/t
Out[6]= 4 -2 -- + t 3 t