T(5,4): Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 35: Line 35:
|}
|}


[[Khovanov Homology]]. The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>8 is the signature of T(5,4). Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>.
<table border=1>

<center>
<table border=1>
<tr align=center>
<tr align=center>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
Line 43: Line 46:
</table></td>
</table></td>
<td width=7.14286%>0</td ><td width=7.14286%>1</td ><td width=7.14286%>2</td ><td width=7.14286%>3</td ><td width=7.14286%>4</td ><td width=7.14286%>5</td ><td width=7.14286%>6</td ><td width=7.14286%>7</td ><td width=7.14286%>8</td ><td width=7.14286%>9</td ><td width=14.2857%>&chi;</td></tr>
<td width=7.14286%>0</td ><td width=7.14286%>1</td ><td width=7.14286%>2</td ><td width=7.14286%>3</td ><td width=7.14286%>4</td ><td width=7.14286%>5</td ><td width=7.14286%>6</td ><td width=7.14286%>7</td ><td width=7.14286%>8</td ><td width=7.14286%>9</td ><td width=14.2857%>&chi;</td></tr>
<tr align=center><td>27</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=red>1</td><td>-1</td></tr>
<tr align=center><td>27</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>-1</td></tr>
<tr align=center><td>25</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=red>1</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>25</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=red>1</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>23</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=red>1</td><td>&nbsp;</td><td bgcolor=red>1</td><td bgcolor=red>1</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>23</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=red>1</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>21</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=red>1</td><td bgcolor=red>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>21</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=red>1</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>19</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=red>1</td><td bgcolor=red>1</td><td>&nbsp;</td><td bgcolor=red>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>19</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=red>1</td><td bgcolor=red>1</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>17</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=red>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>17</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>15</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=red>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>15</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=red>1</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>13</td><td bgcolor=red>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>13</td><td bgcolor=red>1</td><td>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>11</td><td bgcolor=red>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>11</td><td bgcolor=red>1</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
</table>
</table>
</center>



{{subst:Quantum Invariants|name=7_5}}
{{subst:Quantum Invariants|name=7_5}}

Revision as of 15:26, 26 August 2005


[[Image:T(7,3).{{{ext}}}|80px|link=T(7,3)]]

T(7,3)

[[Image:T(15,2).{{{ext}}}|80px|link=T(15,2)]]

T(15,2)

Visit T(5,4)'s page at Knotilus!

Visit T(5,4)'s page at the original Knot Atlas!

Knot presentations

Planar diagram presentation X17,25,18,24 X10,26,11,25 X3,27,4,26 X11,19,12,18 X4,20,5,19 X27,21,28,20 X5,13,6,12 X28,14,29,13 X21,15,22,14 X29,7,30,6 X22,8,23,7 X15,9,16,8 X23,1,24,30 X16,2,17,1 X9,3,10,2
Gauss code {14, 15, -3, -5, -7, 10, 11, 12, -15, -2, -4, 7, 8, 9, -12, -14, -1, 4, 5, 6, -9, -11, -13, 1, 2, 3, -6, -8, -10, 13}
Dowker-Thistlethwaite code 16 -26 -12 22 -2 -18 28 -8 -24 4 -14 -30 10 -20 -6

Polynomial invariants

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 5, 8 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant Data:T(5,4)/QuantumInvariant/A2/1,0
The G2 invariant Data:T(5,4)/QuantumInvariant/G2/1,0

Vassiliev invariants

V2 and V3 {0, 50})

Khovanov Homology. The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 8 is the signature of T(5,4). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.

\ r
  \  
j \
0123456789χ
27         1-1
25       1  -1
23     1 11 -1
21     11   0
19   11 1   1
17    1     1
15  1       1
131         1
111         1


{{subst:Quantum Invariants|name=7_5}}