10 56: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
<!-- --> |
|||
<!-- --> |
|||
<!-- provide an anchor so we can return to the top of the page --> |
<!-- provide an anchor so we can return to the top of the page --> |
||
<span id="top"></span> |
<span id="top"></span> |
||
<!-- --> |
|||
<!-- this relies on transclusion for next and previous links --> |
<!-- this relies on transclusion for next and previous links --> |
||
{{Knot Navigation Links|ext=gif}} |
{{Knot Navigation Links|ext=gif}} |
||
⚫ | |||
{| align=left |
|||
|- valign=top |
|||
|[[Image:{{PAGENAME}}.gif]] |
|||
⚫ | |||
|{{:{{PAGENAME}} Quick Notes}} |
|||
|} |
|||
<br style="clear:both" /> |
<br style="clear:both" /> |
||
Line 24: | Line 21: | ||
{{Vassiliev Invariants}} |
{{Vassiliev Invariants}} |
||
{{Khovanov Homology|table=<table border=1> |
|||
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
|||
<center><table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
||
Line 48: | Line 41: | ||
<tr align=center><td>1</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>1</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
<tr align=center><td>-1</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-1</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
</table> |
</table>}} |
||
{{Computer Talk Header}} |
{{Computer Talk Header}} |
||
Line 141: | Line 133: | ||
2 q t + 4 q t + q t + 2 q t + q t</nowiki></pre></td></tr> |
2 q t + 4 q t + q t + 2 q t + q t</nowiki></pre></td></tr> |
||
</table> |
</table> |
||
[[Category:Knot Page]] |
Revision as of 20:05, 28 August 2005
|
|
![]() |
Visit 10 56's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 56's page at Knotilus! Visit 10 56's page at the original Knot Atlas! |
Knot presentations
Planar diagram presentation | X4251 X10,4,11,3 X12,6,13,5 X18,14,19,13 X16,7,17,8 X6,17,7,18 X20,16,1,15 X14,20,15,19 X8,12,9,11 X2,10,3,9 |
Gauss code | 1, -10, 2, -1, 3, -6, 5, -9, 10, -2, 9, -3, 4, -8, 7, -5, 6, -4, 8, -7 |
Dowker-Thistlethwaite code | 4 10 12 16 2 8 18 20 6 14 |
Conway Notation | [221,3,2] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
Vassiliev invariants
V2 and V3: | (0, -2) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 4 is the signature of 10 56. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[10, 56]] |
Out[2]= | 10 |
In[3]:= | PD[Knot[10, 56]] |
Out[3]= | PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[12, 6, 13, 5], X[18, 14, 19, 13],X[16, 7, 17, 8], X[6, 17, 7, 18], X[20, 16, 1, 15],X[14, 20, 15, 19], X[8, 12, 9, 11], X[2, 10, 3, 9]] |
In[4]:= | GaussCode[Knot[10, 56]] |
Out[4]= | GaussCode[1, -10, 2, -1, 3, -6, 5, -9, 10, -2, 9, -3, 4, -8, 7, -5, 6, -4, 8, -7] |
In[5]:= | BR[Knot[10, 56]] |
Out[5]= | BR[4, {1, 1, 1, 2, -1, 2, -3, 2, 2, 2, -3}] |
In[6]:= | alex = Alexander[Knot[10, 56]][t] |
Out[6]= | 2 8 14 2 3 |
In[7]:= | Conway[Knot[10, 56]][z] |
Out[7]= | 4 6 1 - 4 z - 2 z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[10, 25], Knot[10, 56], Knot[11, Alternating, 140]} |
In[9]:= | {KnotDet[Knot[10, 56]], KnotSignature[Knot[10, 56]]} |
Out[9]= | {65, 4} |
In[10]:= | J=Jones[Knot[10, 56]][q] |
Out[10]= | 2 3 4 5 6 7 8 9 10 1 - 2 q + 5 q - 7 q + 10 q - 11 q + 10 q - 9 q + 6 q - 3 q + q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[10, 25], Knot[10, 56]} |
In[12]:= | A2Invariant[Knot[10, 56]][q] |
Out[12]= | 4 6 8 10 12 18 20 22 24 26 |
In[13]:= | Kauffman[Knot[10, 56]][a, z] |
Out[13]= | 2 2 2 2 2-8 2 2 4 z 8 z 4 z z 2 z 2 z 7 z 3 z |
In[14]:= | {Vassiliev[2][Knot[10, 56]], Vassiliev[3][Knot[10, 56]]} |
Out[14]= | {0, -2} |
In[15]:= | Kh[Knot[10, 56]][q, t] |
Out[15]= | 33 5 1 q q 5 7 7 2 9 2 |