9 13: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- -->
<!-- -->
<!-- -->

<!-- -->
<!-- -->
<!-- provide an anchor so we can return to the top of the page -->
<!-- provide an anchor so we can return to the top of the page -->
<span id="top"></span>
<span id="top"></span>
<!-- -->

<!-- this relies on transclusion for next and previous links -->
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}
{{Knot Navigation Links|ext=gif}}


{{Rolfsen Knot Page Header|n=9|k=13|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-7,8,-9,2,-1,3,-5,4,-6,9,-8,7,-2,6,-3,5,-4/goTop.html}}
{| align=left
|- valign=top
|[[Image:{{PAGENAME}}.gif]]
|{{Rolfsen Knot Site Links|n=9|k=13|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-7,8,-9,2,-1,3,-5,4,-6,9,-8,7,-2,6,-3,5,-4/goTop.html}}
|{{:{{PAGENAME}} Quick Notes}}
|}


<br style="clear:both" />
<br style="clear:both" />
Line 24: Line 21:
{{Vassiliev Invariants}}
{{Vassiliev Invariants}}


===[[Khovanov Homology]]===
{{Khovanov Homology|table=<table border=1>

The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>.

<center><table border=1>
<tr align=center>
<tr align=center>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
Line 47: Line 40:
<tr align=center><td>5</td><td bgcolor=yellow>1</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>5</td><td bgcolor=yellow>1</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>3</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>3</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
</table></center>
</table>}}

{{Computer Talk Header}}
{{Computer Talk Header}}


Line 126: Line 118:
3 q t + q t + q t + q t</nowiki></pre></td></tr>
3 q t + q t + q t + q t</nowiki></pre></td></tr>
</table>
</table>

[[Category:Knot Page]]

Revision as of 20:13, 28 August 2005

9 12.gif

9_12

9 14.gif

9_14

9 13.gif Visit 9 13's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 13's page at Knotilus!

Visit 9 13's page at the original Knot Atlas!

9 13 Quick Notes


9 13 Further Notes and Views

Knot presentations

Planar diagram presentation X6271 X14,6,15,5 X16,8,17,7 X18,10,1,9 X8,18,9,17 X10,16,11,15 X2,14,3,13 X12,4,13,3 X4,12,5,11
Gauss code 1, -7, 8, -9, 2, -1, 3, -5, 4, -6, 9, -8, 7, -2, 6, -3, 5, -4
Dowker-Thistlethwaite code 6 12 14 16 18 4 2 10 8
Conway Notation [3213]

Three dimensional invariants

Symmetry type Reversible
Unknotting number
3-genus 2
Bridge index 2
Super bridge index Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{4,6\}}
Nakanishi index 1
Maximal Thurston-Bennequin number [3][-14]
Hyperbolic Volume 9.13509
A-Polynomial See Data:9 13/A-polynomial

[edit Notes for 9 13's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2}
Topological 4 genus Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2}
Concordance genus Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2}
Rasmussen s-Invariant -4

[edit Notes for 9 13's four dimensional invariants]

Polynomial invariants

Alexander polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4 t^2-9 t+11-9 t^{-1} +4 t^{-2} }
Conway polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4 z^4+7 z^2+1}
2nd Alexander ideal (db, data sources) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}}
Determinant and Signature { 37, 4 }
Jones polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{11}+2 q^{10}-4 q^9+5 q^8-6 q^7+7 q^6-5 q^5+4 q^4-2 q^3+q^2}
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8 a^{-8} +z^8 a^{-10} +2 z^7 a^{-7} +4 z^7 a^{-9} +2 z^7 a^{-11} +3 z^6 a^{-6} +z^6 a^{-8} +2 z^6 a^{-12} +2 z^5 a^{-5} -2 z^5 a^{-7} -9 z^5 a^{-9} -4 z^5 a^{-11} +z^5 a^{-13} +z^4 a^{-4} -7 z^4 a^{-6} -4 z^4 a^{-8} -z^4 a^{-10} -5 z^4 a^{-12} -3 z^3 a^{-5} +z^3 a^{-7} +9 z^3 a^{-9} +2 z^3 a^{-11} -3 z^3 a^{-13} -2 z^2 a^{-4} +8 z^2 a^{-6} +6 z^2 a^{-8} -2 z^2 a^{-10} +2 z^2 a^{-12} +z a^{-7} -3 z a^{-9} -2 z a^{-11} +2 z a^{-13} -3 a^{-6} - a^{-8} + a^{-10} }
The A2 invariant Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-6} - q^{-8} + q^{-10} +3 q^{-16} + q^{-18} +2 q^{-20} - q^{-24} -2 q^{-28} - q^{-34} }
The G2 invariant Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-30} - q^{-32} +2 q^{-34} -3 q^{-36} +2 q^{-38} - q^{-40} -2 q^{-42} +7 q^{-44} -8 q^{-46} +11 q^{-48} -9 q^{-50} +4 q^{-52} +4 q^{-54} -12 q^{-56} +19 q^{-58} -20 q^{-60} +17 q^{-62} -8 q^{-64} -4 q^{-66} +18 q^{-68} -22 q^{-70} +23 q^{-72} -13 q^{-74} + q^{-76} +10 q^{-78} -15 q^{-80} +13 q^{-82} - q^{-84} -8 q^{-86} +22 q^{-88} -18 q^{-90} +6 q^{-92} +13 q^{-94} -27 q^{-96} +36 q^{-98} -32 q^{-100} +16 q^{-102} +4 q^{-104} -21 q^{-106} +34 q^{-108} -36 q^{-110} +24 q^{-112} -9 q^{-114} -11 q^{-116} +18 q^{-118} -22 q^{-120} +14 q^{-122} -2 q^{-124} -10 q^{-126} +15 q^{-128} -14 q^{-130} +2 q^{-132} +12 q^{-134} -24 q^{-136} +24 q^{-138} -17 q^{-140} + q^{-142} +13 q^{-144} -23 q^{-146} +26 q^{-148} -20 q^{-150} +9 q^{-152} +2 q^{-154} -12 q^{-156} +14 q^{-158} -12 q^{-160} +9 q^{-162} -3 q^{-164} - q^{-166} +3 q^{-168} -4 q^{-170} +3 q^{-172} - q^{-174} + q^{-176} }

Vassiliev invariants

V2 and V3: (7, 18)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 4 is the signature of 9 13. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
0123456789χ
23         1-1
21        1 1
19       31 -2
17      21  1
15     43   -1
13    32    1
11   24     2
9  23      -1
7  2       2
512        -1
31         1
Integral Khovanov Homology

(db, data source)

  
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{2}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=2} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{2}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=3} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{2}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=4} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{3}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=5} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{4}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=6} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{2}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=7} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}\oplus{\mathbb Z}_2^{3}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{3}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=8} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}\oplus{\mathbb Z}_2} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=9} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}_2} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{Include}(\textrm{ColouredJonesM.mhtml})}

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[9, 13]]
Out[2]=  
9
In[3]:=
PD[Knot[9, 13]]
Out[3]=  
PD[X[6, 2, 7, 1], X[14, 6, 15, 5], X[16, 8, 17, 7], X[18, 10, 1, 9], 
 X[8, 18, 9, 17], X[10, 16, 11, 15], X[2, 14, 3, 13], X[12, 4, 13, 3], 

X[4, 12, 5, 11]]
In[4]:=
GaussCode[Knot[9, 13]]
Out[4]=  
GaussCode[1, -7, 8, -9, 2, -1, 3, -5, 4, -6, 9, -8, 7, -2, 6, -3, 5, -4]
In[5]:=
BR[Knot[9, 13]]
Out[5]=  
BR[4, {1, 1, 1, 1, 2, -1, 2, 2, 3, -2, 3}]
In[6]:=
alex = Alexander[Knot[9, 13]][t]
Out[6]=  
     4    9            2

11 + -- - - - 9 t + 4 t

     2   t
t
In[7]:=
Conway[Knot[9, 13]][z]
Out[7]=  
       2      4
1 + 7 z  + 4 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[9, 13]}
In[9]:=
{KnotDet[Knot[9, 13]], KnotSignature[Knot[9, 13]]}
Out[9]=  
{37, 4}
In[10]:=
J=Jones[Knot[9, 13]][q]
Out[10]=  
 2      3      4      5      6      7      8      9      10    11
q  - 2 q  + 4 q  - 5 q  + 7 q  - 6 q  + 5 q  - 4 q  + 2 q   - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[9, 13]}
In[12]:=
A2Invariant[Knot[9, 13]][q]
Out[12]=  
 6    8    10      16    18      20    24      28    34
q  - q  + q   + 3 q   + q   + 2 q   - q   - 2 q   - q
In[13]:=
Kauffman[Knot[9, 13]][a, z]
Out[13]=  
                                            2      2      2      2
-10    -8   3    2 z   2 z   3 z   z    2 z    2 z    6 z    8 z

a - a - -- + --- - --- - --- + -- + ---- - ---- + ---- + ---- -

             6    13    11    9     7    12     10      8      6
            a    a     a     a     a    a      a       a      a

    2      3      3      3    3      3      4    4       4      4
 2 z    3 z    2 z    9 z    z    3 z    5 z    z     4 z    7 z
 ---- - ---- + ---- + ---- + -- - ---- - ---- - --- - ---- - ---- + 
   4     13     11      9     7     5     12     10     8      6
  a     a      a       a     a     a     a      a      a      a

  4    5       5      5      5      5      6    6      6      7
 z    z     4 z    9 z    2 z    2 z    2 z    z    3 z    2 z
 -- + --- - ---- - ---- - ---- + ---- + ---- + -- + ---- + ---- + 
  4    13    11      9      7      5     12     8     6     11
 a    a     a       a      a      a     a      a     a     a

    7      7    8     8
 4 z    2 z    z     z
 ---- + ---- + --- + --
   9      7     10    8
a a a a
In[14]:=
{Vassiliev[2][Knot[9, 13]], Vassiliev[3][Knot[9, 13]]}
Out[14]=  
{0, 18}
In[15]:=
Kh[Knot[9, 13]][q, t]
Out[15]=  
 3    5      5        7  2      9  2      9  3      11  3      11  4

q + q + 2 q t + 2 q t + 2 q t + 3 q t + 2 q t + 4 q t +

    13  4      13  5      15  5      15  6      17  6    17  7
 3 q   t  + 2 q   t  + 4 q   t  + 3 q   t  + 2 q   t  + q   t  + 

    19  7    19  8    21  8    23  9
3 q t + q t + q t + q t