9 12: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
<!-- --> |
|||
<!-- --> |
|||
<!-- provide an anchor so we can return to the top of the page --> |
<!-- provide an anchor so we can return to the top of the page --> |
||
<span id="top"></span> |
<span id="top"></span> |
||
<!-- --> |
|||
<!-- this relies on transclusion for next and previous links --> |
<!-- this relies on transclusion for next and previous links --> |
||
{{Knot Navigation Links|ext=gif}} |
{{Knot Navigation Links|ext=gif}} |
||
⚫ | |||
{| align=left |
|||
|- valign=top |
|||
|[[Image:{{PAGENAME}}.gif]] |
|||
⚫ | |||
|{{:{{PAGENAME}} Quick Notes}} |
|||
|} |
|||
<br style="clear:both" /> |
<br style="clear:both" /> |
||
Line 24: | Line 21: | ||
{{Vassiliev Invariants}} |
{{Vassiliev Invariants}} |
||
{{Khovanov Homology|table=<table border=1> |
|||
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
|||
<center><table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=14.2857%><table cellpadding=0 cellspacing=0> |
<td width=14.2857%><table cellpadding=0 cellspacing=0> |
||
Line 47: | Line 40: | ||
<tr align=center><td>-15</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-15</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
<tr align=center><td>-17</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-17</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table> |
</table>}} |
||
{{Computer Talk Header}} |
{{Computer Talk Header}} |
||
Line 122: | Line 114: | ||
q t q t q t q t q t q t</nowiki></pre></td></tr> |
q t q t q t q t q t q t</nowiki></pre></td></tr> |
||
</table> |
</table> |
||
[[Category:Knot Page]] |
Revision as of 20:16, 28 August 2005
|
|
![]() |
Visit 9 12's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 9 12's page at Knotilus! Visit 9 12's page at the original Knot Atlas! |
Knot presentations
Planar diagram presentation | X1425 X3,10,4,11 X5,16,6,17 X11,1,12,18 X17,13,18,12 X7,14,8,15 X13,8,14,9 X15,6,16,7 X9,2,10,3 |
Gauss code | -1, 9, -2, 1, -3, 8, -6, 7, -9, 2, -4, 5, -7, 6, -8, 3, -5, 4 |
Dowker-Thistlethwaite code | 4 10 16 14 2 18 8 6 12 |
Conway Notation | [4212] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 t^2+9 t-13+9 t^{-1} -2 t^{-2} } |
Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 z^4+z^2+1} |
2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
Determinant and Signature | { 35, -2 } |
Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q-2+4 q^{-1} -5 q^{-2} +6 q^{-3} -6 q^{-4} +5 q^{-5} -3 q^{-6} +2 q^{-7} - q^{-8} } |
HOMFLY-PT polynomial (db, data sources) | |
Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^5 a^9-3 z^3 a^9+z a^9+2 z^6 a^8-6 z^4 a^8+4 z^2 a^8-a^8+2 z^7 a^7-5 z^5 a^7+3 z^3 a^7-z a^7+z^8 a^6-5 z^4 a^6+7 z^2 a^6-2 a^6+4 z^7 a^5-11 z^5 a^5+13 z^3 a^5-4 z a^5+z^8 a^4-z^4 a^4+3 z^2 a^4-a^4+2 z^7 a^3-3 z^5 a^3+4 z^3 a^3-2 z a^3+2 z^6 a^2-z^4 a^2-2 z^2 a^2+2 z^5 a-3 z^3 a+z^4-2 z^2+1} |
The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{26}-q^{24}+q^{22}+q^{18}+2 q^{16}-q^{14}-q^{10}+q^6-q^4+2 q^2+ q^{-4} } |
The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{128}-q^{126}+2 q^{124}-3 q^{122}+2 q^{120}-2 q^{118}-2 q^{116}+7 q^{114}-10 q^{112}+10 q^{110}-10 q^{108}+4 q^{106}+4 q^{104}-15 q^{102}+20 q^{100}-20 q^{98}+14 q^{96}-q^{94}-12 q^{92}+19 q^{90}-18 q^{88}+15 q^{86}-3 q^{84}-10 q^{82}+14 q^{80}-11 q^{78}+2 q^{76}+10 q^{74}-16 q^{72}+18 q^{70}-8 q^{68}-4 q^{66}+17 q^{64}-26 q^{62}+29 q^{60}-21 q^{58}+6 q^{56}+11 q^{54}-23 q^{52}+30 q^{50}-25 q^{48}+13 q^{46}-13 q^{42}+16 q^{40}-14 q^{38}+3 q^{36}+8 q^{34}-13 q^{32}+10 q^{30}-2 q^{28}-9 q^{26}+17 q^{24}-19 q^{22}+15 q^{20}-6 q^{18}-5 q^{16}+14 q^{14}-16 q^{12}+17 q^{10}-10 q^8+5 q^6+q^4-7 q^2+9-8 q^{-2} +7 q^{-4} -3 q^{-6} + q^{-8} +2 q^{-10} -3 q^{-12} +3 q^{-14} - q^{-16} + q^{-18} } |
A1 Invariants.
Weight | Invariant |
---|---|
1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{17}+q^{15}-q^{13}+2 q^{11}-q^9+q^5-q^3+2 q- q^{-1} + q^{-3} } |
2 | |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["9 12"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 t^2+9 t-13+9 t^{-1} -2 t^{-2} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2 z^4+z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 35, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q-2+4 q^{-1} -5 q^{-2} +6 q^{-3} -6 q^{-4} +5 q^{-5} -3 q^{-6} +2 q^{-7} - q^{-8} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^5 a^9-3 z^3 a^9+z a^9+2 z^6 a^8-6 z^4 a^8+4 z^2 a^8-a^8+2 z^7 a^7-5 z^5 a^7+3 z^3 a^7-z a^7+z^8 a^6-5 z^4 a^6+7 z^2 a^6-2 a^6+4 z^7 a^5-11 z^5 a^5+13 z^3 a^5-4 z a^5+z^8 a^4-z^4 a^4+3 z^2 a^4-a^4+2 z^7 a^3-3 z^5 a^3+4 z^3 a^3-2 z a^3+2 z^6 a^2-z^4 a^2-2 z^2 a^2+2 z^5 a-3 z^3 a+z^4-2 z^2+1} |
Vassiliev invariants
V2 and V3: | (1, -3) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} -2 is the signature of 9 12. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{Include}(\textrm{ColouredJonesM.mhtml})}
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[9, 12]] |
Out[2]= | 9 |
In[3]:= | PD[Knot[9, 12]] |
Out[3]= | PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[5, 16, 6, 17], X[11, 1, 12, 18],X[17, 13, 18, 12], X[7, 14, 8, 15], X[13, 8, 14, 9], X[15, 6, 16, 7],X[9, 2, 10, 3]] |
In[4]:= | GaussCode[Knot[9, 12]] |
Out[4]= | GaussCode[-1, 9, -2, 1, -3, 8, -6, 7, -9, 2, -4, 5, -7, 6, -8, 3, -5, 4] |
In[5]:= | BR[Knot[9, 12]] |
Out[5]= | BR[5, {-1, -1, 2, -1, -3, 2, -3, -4, 3, -4}] |
In[6]:= | alex = Alexander[Knot[9, 12]][t] |
Out[6]= | 2 9 2 |
In[7]:= | Conway[Knot[9, 12]][z] |
Out[7]= | 2 4 1 + z - 2 z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[9, 12], Knot[11, NonAlternating, 84]} |
In[9]:= | {KnotDet[Knot[9, 12]], KnotSignature[Knot[9, 12]]} |
Out[9]= | {35, -2} |
In[10]:= | J=Jones[Knot[9, 12]][q] |
Out[10]= | -8 2 3 5 6 6 5 4 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[9, 12], Knot[11, NonAlternating, 15]} |
In[12]:= | A2Invariant[Knot[9, 12]][q] |
Out[12]= | -26 -24 -22 -18 2 -14 -10 -6 -4 2 4 |
In[13]:= | Kauffman[Knot[9, 12]][a, z] |
Out[13]= | 4 6 8 3 5 7 9 2 2 2 |
In[14]:= | {Vassiliev[2][Knot[9, 12]], Vassiliev[3][Knot[9, 12]]} |
Out[14]= | {0, -3} |
In[15]:= | Kh[Knot[9, 12]][q, t] |
Out[15]= | 2 3 1 1 1 2 1 3 2 |