The Kauffman Polynomial: Difference between revisions
No edit summary |
No edit summary |
||
Line 11: | Line 11: | ||
(here <math>T_1</math>, <math>T_2</math>, <math>T_3</math> and <math>T_4</math> are [[Image:backoverslash symbol.gif|20px]], [[Image:slashoverback symbol.gif|20px]], [[Image:vsmoothing symbol.gif|20px]] and [[Image:hsmoothing symbol.gif|20px]], respectively), and by the initial condition <math>L(U)=1</math> where <math>U</math> is the unknot [[Image:BigCirc symbol.gif|20px]]. |
(here <math>T_1</math>, <math>T_2</math>, <math>T_3</math> and <math>T_4</math> are [[Image:backoverslash symbol.gif|20px]], [[Image:slashoverback symbol.gif|20px]], [[Image:vsmoothing symbol.gif|20px]] and [[Image:hsmoothing symbol.gif|20px]], respectively), and by the initial condition <math>L(U)=1</math> where <math>U</math> is the unknot [[Image:BigCirc symbol.gif|20px]]. |
||
<code>KnotTheory`</code> knows about the Kauffman polynomial: |
|||
{{Startup Note}} |
|||
\latexhtml{\small (for {\tt In[1]} see |
|||
Section~\ref{sec:Setup}.)}{\htmlref{{\tt In[1]}}{sec:Setup}} |
|||
%<* InOut[1] *> |
|||
⚫ | |||
\index{Kauffman, Louis} \index{Morrison, Scott} |
|||
<!--END--> |
|||
⚫ | |||
Thus, for example, here's the Kauffman polynomial of the knot |
Thus, for example, here's the Kauffman polynomial of the knot [[5_2]]: |
||
⚫ | |||
\hlink{../Knots/5.2.html}{$5_2$}: |
|||
<!--END--> |
|||
⚫ | |||
⚫ | |||
\vskip 6pt |
|||
⚫ | |||
\index{Jones polynomial} \index{Jones@{\tt Jones}} |
|||
⚫ | |||
polynomial via |
|||
⚫ | |||
⚫ | |||
$K$. Let us verify this fact for the torus knot |
|||
\hlink{../TorusKnots/8.3.html}{$T(8,3)$}: |
|||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
<!--END--> |
|||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
<!--END--> |
|||
{{note|Kauffman}} L. H. Kauffman, ''An invariant of regular isotopy'', Trans. Amer. Math. Soc. '''312''' (1990) 417-471. |
{{note|Kauffman}} L. H. Kauffman, ''An invariant of regular isotopy'', Trans. Amer. Math. Soc. '''312''' (1990) 417-471. |
Revision as of 21:29, 28 August 2005
The Kauffman polynomial (see [Kauffman]) of a knot or link is where is the writhe of (see How is the Jones Polynomial Computed?) and where is the regular isotopy invariant defined by the skein relations
(here is a strand and is the same strand with a kink added) and
(here , , and are , , and , respectively), and by the initial condition where is the unknot .
KnotTheory`
knows about the Kauffman polynomial:
(For In[1] see Setup)
Thus, for example, here's the Kauffman polynomial of the knot 5_2:
It is well known that the Jones polynomial is related to the Kauffman polynomial via
where is some knot or link and where is the number of components of . Let us verify this fact for the torus knot T(8,3):
[Kauffman] ^ L. H. Kauffman, An invariant of regular isotopy, Trans. Amer. Math. Soc. 312 (1990) 417-471.