The HOMFLY-PT Polynomial: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 4: Line 4:


<center><math>
<center><math>
aH\left(\{overcrossing\}\right)
aH\left(\{\overcrossing\}\right)
-a^{-1}H\left(\{undercrossing\}\right)
-a^{-1}H\left(\{\undercrossing\}\right)
= zH\left(\{smoothing\}\right)
= zH\left(\{\smoothing\}\right)
</math></center>
</math></center>


and by the initial condition <math>H(\{bigcirc\})</math>=1.
and by the initial condition <math>H(\{\bigcirc\})</math>=1.


<code>KnotTheory`</code> knows about the HOMFLY-PT polynomial:
<code>KnotTheory`</code> knows about the HOMFLY-PT polynomial:

Revision as of 14:23, 29 August 2005


The HOMFLY-PT polynomial (see [HOMFLY] and [PT]) of a knot or link is defined by the skein relation

Failed to parse (unknown function "\overcrossing"): {\displaystyle aH\left(\{\overcrossing\}\right) -a^{-1}H\left(\{\undercrossing\}\right) = zH\left(\{\smoothing\}\right) }

and by the initial condition =1.

KnotTheory` knows about the HOMFLY-PT polynomial:

(For In[1] see Setup)

In[1]:= ?HOMFLYPT

HOMFLYPT[K][a, z] computes the HOMFLY-PT (Hoste, Ocneanu, Millett, Freyd, Lickorish, Yetter, Przytycki and Traczyk) polynomial of a knot/link K, in the variables a and z.

In[2]:= HOMFLYPT::about

The HOMFLYPT program was written by Scott Morrison.

Thus, for example, here's the HOMFLY-PT polynomial of the knot 8_1:

In[3]:=
K = Knot[8, 1];
In[4]:=
HOMFLYPT[Knot[8, 1]][a, z]
Out[4]=
 -2    4    6    2    2  2    4  2
a   - a  + a  - z  - a  z  - a  z

It is well known that HOMFLY-PT polynomial specializes to the Jones polynomial at and and to the Conway polynomial at . Indeed,

In[5]:=
Expand[HOMFLYPT[K][1/q, Sqrt[q]-1/Sqrt[q]]]
Out[5]=
     -6    -5    -4   2    2    2        2
2 + q   - q   + q   - -- + -- - - - q + q
                       3    2   q
                      q    q
In[6]:=
Jones[K][q]
Out[6]=
     -6    -5    -4   2    2    2        2
2 + q   - q   + q   - -- + -- - - - q + q
                       3    2   q
                      q    q
In[7]:=
{HOMFLYPT[K][1, z], Conway[K][z]}
Out[7]=
        2         2
{1 - 3 z , 1 - 3 z }

In our parametirzation of the link invariant, it satisfies

,

where is some knot or link and where is the number of components of . Let us verify this fact for the Whitehead link, L5a1:

In[8]:=
L = Link[5, Alternating, 1];
In[9]:=
Simplify[{
  (-1)^(Length[Skeleton[L]]-1)(q^2+1+1/q^2)HOMFLYPT[L][1/q^3, q-1/q],
  A2Invariant[L][q]
}]
Out[9]=
      -12    -8    -6   2     -2    2    4    6       -12    -8    -6   2     -2    2    4    6
{2 - q    + q   + q   + -- + q   + q  + q  + q , 2 - q    + q   + q   + -- + q   + q  + q  + q }
                         4                                               4
                        q                                               q

[HOMFLY] ^  J. Hoste, A. Ocneanu, K. Millett, P. Freyd, W. B. R. Lickorish and D. Yetter, A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. 12 (1985) 239-246.

[PT] ^  J. Przytycki and P. Traczyk, , Proc. Amer. Math. Soc. 100 (1987) 744-748.