9 29: Difference between revisions
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 16: | Line 16: | ||
{{Knot Presentations}} |
{{Knot Presentations}} |
||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
</table> |
|||
[[Invariants from Braid Theory|Length]] is 9, width is 4. |
|||
[[Invariants from Braid Theory|Braid index]] is 4. |
|||
</td> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
{{3D Invariants}} |
||
{{4D Invariants}} |
{{4D Invariants}} |
||
{{Polynomial Invariants}} |
{{Polynomial Invariants}} |
||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{[[9_28]], [[10_163]], [[K11n87]], ...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
{{Vassiliev Invariants}} |
||
Line 41: | Line 72: | ||
<tr align=center><td>-13</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-13</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table>}} |
</table>}} |
||
{{Display Coloured Jones|J2=<math>q^{10}-3 q^9-q^8+11 q^7-9 q^6-13 q^5+30 q^4-8 q^3-37 q^2+46 q+4-60 q^{-1} +51 q^{-2} +20 q^{-3} -71 q^{-4} +43 q^{-5} +32 q^{-6} -65 q^{-7} +27 q^{-8} +29 q^{-9} -42 q^{-10} +12 q^{-11} +15 q^{-12} -16 q^{-13} +4 q^{-14} +3 q^{-15} -3 q^{-16} + q^{-17} </math>|J3=<math>q^{21}-3 q^{20}-q^{19}+5 q^{18}+9 q^{17}-9 q^{16}-23 q^{15}+7 q^{14}+42 q^{13}+8 q^{12}-64 q^{11}-36 q^{10}+78 q^9+76 q^8-78 q^7-121 q^6+62 q^5+165 q^4-32 q^3-199 q^2-8 q+220+57 q^{-1} -237 q^{-2} -96 q^{-3} +230 q^{-4} +149 q^{-5} -231 q^{-6} -180 q^{-7} +206 q^{-8} +222 q^{-9} -190 q^{-10} -232 q^{-11} +147 q^{-12} +243 q^{-13} -113 q^{-14} -222 q^{-15} +69 q^{-16} +190 q^{-17} -37 q^{-18} -144 q^{-19} +16 q^{-20} +94 q^{-21} -2 q^{-22} -58 q^{-23} +2 q^{-24} +29 q^{-25} -3 q^{-26} -12 q^{-27} +3 q^{-28} +4 q^{-29} - q^{-30} -3 q^{-31} +3 q^{-32} - q^{-33} </math>|J4=<math>q^{36}-3 q^{35}-q^{34}+5 q^{33}+3 q^{32}+9 q^{31}-19 q^{30}-21 q^{29}+4 q^{28}+19 q^{27}+73 q^{26}-18 q^{25}-78 q^{24}-72 q^{23}-27 q^{22}+203 q^{21}+104 q^{20}-46 q^{19}-210 q^{18}-275 q^{17}+221 q^{16}+300 q^{15}+231 q^{14}-179 q^{13}-630 q^{12}-40 q^{11}+294 q^{10}+632 q^9+177 q^8-792 q^7-440 q^6-53 q^5+861 q^4+697 q^3-625 q^2-713 q-585+809 q^{-1} +1139 q^{-2} -258 q^{-3} -785 q^{-4} -1091 q^{-5} +588 q^{-6} +1429 q^{-7} +153 q^{-8} -747 q^{-9} -1498 q^{-10} +314 q^{-11} +1593 q^{-12} +552 q^{-13} -631 q^{-14} -1782 q^{-15} -18 q^{-16} +1583 q^{-17} +909 q^{-18} -375 q^{-19} -1830 q^{-20} -383 q^{-21} +1284 q^{-22} +1060 q^{-23} +10 q^{-24} -1495 q^{-25} -608 q^{-26} +743 q^{-27} +862 q^{-28} +298 q^{-29} -889 q^{-30} -522 q^{-31} +260 q^{-32} +444 q^{-33} +307 q^{-34} -364 q^{-35} -257 q^{-36} +49 q^{-37} +124 q^{-38} +156 q^{-39} -110 q^{-40} -67 q^{-41} +13 q^{-42} +8 q^{-43} +48 q^{-44} -30 q^{-45} -8 q^{-46} +9 q^{-47} -6 q^{-48} +9 q^{-49} -7 q^{-50} + q^{-51} +3 q^{-52} -3 q^{-53} + q^{-54} </math>|J5=<math>q^{55}-3 q^{54}-q^{53}+5 q^{52}+3 q^{51}+3 q^{50}-q^{49}-17 q^{48}-24 q^{47}+6 q^{46}+31 q^{45}+49 q^{44}+40 q^{43}-30 q^{42}-116 q^{41}-121 q^{40}-14 q^{39}+141 q^{38}+254 q^{37}+183 q^{36}-97 q^{35}-393 q^{34}-436 q^{33}-119 q^{32}+397 q^{31}+745 q^{30}+547 q^{29}-187 q^{28}-946 q^{27}-1087 q^{26}-342 q^{25}+854 q^{24}+1603 q^{23}+1140 q^{22}-372 q^{21}-1852 q^{20}-2026 q^{19}-532 q^{18}+1651 q^{17}+2778 q^{16}+1718 q^{15}-939 q^{14}-3154 q^{13}-2961 q^{12}-221 q^{11}+3013 q^{10}+4016 q^9+1672 q^8-2353 q^7-4724 q^6-3172 q^5+1288 q^4+4966 q^3+4547 q^2+62 q-4825-5707 q^{-1} -1432 q^{-2} +4371 q^{-3} +6521 q^{-4} +2836 q^{-5} -3748 q^{-6} -7193 q^{-7} -4013 q^{-8} +3081 q^{-9} +7581 q^{-10} +5147 q^{-11} -2392 q^{-12} -8012 q^{-13} -6080 q^{-14} +1787 q^{-15} +8239 q^{-16} +7044 q^{-17} -1117 q^{-18} -8550 q^{-19} -7887 q^{-20} +434 q^{-21} +8574 q^{-22} +8763 q^{-23} +451 q^{-24} -8492 q^{-25} -9411 q^{-26} -1445 q^{-27} +7895 q^{-28} +9875 q^{-29} +2584 q^{-30} -6985 q^{-31} -9832 q^{-32} -3624 q^{-33} +5569 q^{-34} +9284 q^{-35} +4462 q^{-36} -3979 q^{-37} -8171 q^{-38} -4816 q^{-39} +2348 q^{-40} +6628 q^{-41} +4672 q^{-42} -964 q^{-43} -4922 q^{-44} -4076 q^{-45} +42 q^{-46} +3291 q^{-47} +3159 q^{-48} +473 q^{-49} -1978 q^{-50} -2219 q^{-51} -579 q^{-52} +1066 q^{-53} +1371 q^{-54} +490 q^{-55} -511 q^{-56} -764 q^{-57} -323 q^{-58} +220 q^{-59} +392 q^{-60} +170 q^{-61} -98 q^{-62} -172 q^{-63} -71 q^{-64} +33 q^{-65} +71 q^{-66} +37 q^{-67} -28 q^{-68} -28 q^{-69} +4 q^{-70} +3 q^{-71} +2 q^{-72} +9 q^{-73} -6 q^{-74} -6 q^{-75} +7 q^{-76} - q^{-77} -3 q^{-78} +3 q^{-79} - q^{-80} </math>|J6=<math>q^{78}-3 q^{77}-q^{76}+5 q^{75}+3 q^{74}+3 q^{73}-7 q^{72}+q^{71}-20 q^{70}-22 q^{69}+18 q^{68}+32 q^{67}+54 q^{66}+18 q^{65}+24 q^{64}-90 q^{63}-164 q^{62}-101 q^{61}-6 q^{60}+180 q^{59}+241 q^{58}+393 q^{57}+74 q^{56}-324 q^{55}-581 q^{54}-647 q^{53}-271 q^{52}+207 q^{51}+1217 q^{50}+1242 q^{49}+702 q^{48}-376 q^{47}-1558 q^{46}-2121 q^{45}-1870 q^{44}+492 q^{43}+2230 q^{42}+3431 q^{41}+2741 q^{40}+412 q^{39}-2883 q^{38}-5620 q^{37}-4131 q^{36}-1195 q^{35}+3704 q^{34}+6942 q^{33}+7131 q^{32}+2474 q^{31}-5071 q^{30}-8939 q^{29}-9751 q^{28}-3787 q^{27}+4702 q^{26}+12713 q^{25}+12976 q^{24}+4715 q^{23}-5335 q^{22}-15491 q^{21}-16099 q^{20}-7864 q^{19}+8110 q^{18}+19072 q^{17}+18793 q^{16}+9107 q^{15}-9630 q^{14}-22746 q^{13}-24071 q^{12}-7497 q^{11}+12872 q^{10}+26434 q^9+26530 q^8+7049 q^7-17140 q^6-33580 q^5-25683 q^4-3472 q^3+22509 q^2+37520 q+26018-2422 q^{-1} -32653 q^{-2} -38225 q^{-3} -21762 q^{-4} +10767 q^{-5} +39573 q^{-6} +40200 q^{-7} +13842 q^{-8} -25216 q^{-9} -43540 q^{-10} -36056 q^{-11} -2035 q^{-12} +36528 q^{-13} +48571 q^{-14} +26735 q^{-15} -17057 q^{-16} -45092 q^{-17} -45769 q^{-18} -12014 q^{-19} +33152 q^{-20} +54119 q^{-21} +36146 q^{-22} -10914 q^{-23} -46555 q^{-24} -53611 q^{-25} -19825 q^{-26} +30914 q^{-27} +59547 q^{-28} +44895 q^{-29} -5020 q^{-30} -48015 q^{-31} -61616 q^{-32} -28849 q^{-33} +26676 q^{-34} +63623 q^{-35} +54687 q^{-36} +4746 q^{-37} -44936 q^{-38} -67352 q^{-39} -40453 q^{-40} +15693 q^{-41} +60548 q^{-42} +61882 q^{-43} +19047 q^{-44} -32354 q^{-45} -63985 q^{-46} -49510 q^{-47} -1443 q^{-48} +45690 q^{-49} +58777 q^{-50} +30939 q^{-51} -12630 q^{-52} -47747 q^{-53} -47621 q^{-54} -15894 q^{-55} +23543 q^{-56} +42812 q^{-57} +31684 q^{-58} +3796 q^{-59} -25265 q^{-60} -33676 q^{-61} -19131 q^{-62} +5635 q^{-63} +22233 q^{-64} +21648 q^{-65} +9222 q^{-66} -8177 q^{-67} -16791 q^{-68} -12912 q^{-69} -1642 q^{-70} +7705 q^{-71} +9869 q^{-72} +6473 q^{-73} -987 q^{-74} -5801 q^{-75} -5525 q^{-76} -1818 q^{-77} +1708 q^{-78} +2954 q^{-79} +2617 q^{-80} +272 q^{-81} -1472 q^{-82} -1551 q^{-83} -611 q^{-84} +282 q^{-85} +558 q^{-86} +695 q^{-87} +117 q^{-88} -337 q^{-89} -294 q^{-90} -77 q^{-91} +68 q^{-92} +43 q^{-93} +137 q^{-94} +12 q^{-95} -81 q^{-96} -32 q^{-97} +8 q^{-98} +24 q^{-99} -18 q^{-100} +23 q^{-101} +3 q^{-102} -20 q^{-103} +3 q^{-104} +3 q^{-105} +6 q^{-106} -7 q^{-107} + q^{-108} +3 q^{-109} -3 q^{-110} + q^{-111} </math>|J7=<math>q^{105}-3 q^{104}-q^{103}+5 q^{102}+3 q^{101}+3 q^{100}-7 q^{99}-5 q^{98}-2 q^{97}-18 q^{96}-10 q^{95}+19 q^{94}+37 q^{93}+57 q^{92}+19 q^{91}-20 q^{90}-35 q^{89}-133 q^{88}-152 q^{87}-89 q^{86}+42 q^{85}+268 q^{84}+342 q^{83}+314 q^{82}+226 q^{81}-187 q^{80}-602 q^{79}-875 q^{78}-884 q^{77}-221 q^{76}+540 q^{75}+1308 q^{74}+1944 q^{73}+1583 q^{72}+493 q^{71}-1225 q^{70}-3091 q^{69}-3567 q^{68}-2798 q^{67}-617 q^{66}+2878 q^{65}+5492 q^{64}+6556 q^{63}+4805 q^{62}-155 q^{61}-5479 q^{60}-9858 q^{59}-10883 q^{58}-6485 q^{57}+1127 q^{56}+10330 q^{55}+16875 q^{54}+15988 q^{53}+8580 q^{52}-4633 q^{51}-18514 q^{50}-25401 q^{49}-22994 q^{48}-8982 q^{47}+12056 q^{46}+29687 q^{45}+37723 q^{44}+29101 q^{43}+5120 q^{42}-23262 q^{41}-46602 q^{40}-51133 q^{39}-31706 q^{38}+3323 q^{37}+43079 q^{36}+67283 q^{35}+62149 q^{34}+29443 q^{33}-22796 q^{32}-69988 q^{31}-88369 q^{30}-69424 q^{29}-13652 q^{28}+53920 q^{27}+101325 q^{26}+107869 q^{25}+61475 q^{24}-18257 q^{23}-94844 q^{22}-135477 q^{21}-112112 q^{20}-32813 q^{19}+66891 q^{18}+144984 q^{17}+155949 q^{16}+91657 q^{15}-20006 q^{14}-132996 q^{13}-185483 q^{12}-149479 q^{11}-39161 q^{10}+100893 q^9+196107 q^8+198060 q^7+102902 q^6-53039 q^5-187532 q^4-232727 q^3-163734 q^2-3501 q+162847+251327 q^{-1} +215796 q^{-2} +62457 q^{-3} -126646 q^{-4} -255411 q^{-5} -256846 q^{-6} -118052 q^{-7} +85277 q^{-8} +248069 q^{-9} +285755 q^{-10} +166696 q^{-11} -42882 q^{-12} -233495 q^{-13} -304972 q^{-14} -206976 q^{-15} +4237 q^{-16} +216215 q^{-17} +316237 q^{-18} +238621 q^{-19} +29174 q^{-20} -199228 q^{-21} -323576 q^{-22} -263598 q^{-23} -55747 q^{-24} +185744 q^{-25} +329272 q^{-26} +283380 q^{-27} +76834 q^{-28} -176163 q^{-29} -336443 q^{-30} -301601 q^{-31} -93702 q^{-32} +171077 q^{-33} +345916 q^{-34} +320128 q^{-35} +109928 q^{-36} -167583 q^{-37} -358376 q^{-38} -341928 q^{-39} -128398 q^{-40} +163029 q^{-41} +371166 q^{-42} +366896 q^{-43} +153100 q^{-44} -152125 q^{-45} -381130 q^{-46} -394208 q^{-47} -184955 q^{-48} +131056 q^{-49} +381977 q^{-50} +419089 q^{-51} +223868 q^{-52} -96262 q^{-53} -368829 q^{-54} -435963 q^{-55} -264871 q^{-56} +48726 q^{-57} +336921 q^{-58} +437136 q^{-59} +301531 q^{-60} +8157 q^{-61} -286250 q^{-62} -418086 q^{-63} -325264 q^{-64} -65768 q^{-65} +220557 q^{-66} +376410 q^{-67} +329393 q^{-68} +115480 q^{-69} -147897 q^{-70} -316152 q^{-71} -311118 q^{-72} -148664 q^{-73} +78719 q^{-74} +244798 q^{-75} +272303 q^{-76} +161037 q^{-77} -21770 q^{-78} -172351 q^{-79} -220234 q^{-80} -153536 q^{-81} -16964 q^{-82} +108723 q^{-83} +163644 q^{-84} +130712 q^{-85} +36969 q^{-86} -59298 q^{-87} -111331 q^{-88} -100865 q^{-89} -41494 q^{-90} +26537 q^{-91} +69152 q^{-92} +70437 q^{-93} +36131 q^{-94} -7869 q^{-95} -39001 q^{-96} -44848 q^{-97} -26780 q^{-98} -477 q^{-99} +20036 q^{-100} +26152 q^{-101} +17297 q^{-102} +2775 q^{-103} -9348 q^{-104} -13916 q^{-105} -9910 q^{-106} -2628 q^{-107} +4013 q^{-108} +6942 q^{-109} +5121 q^{-110} +1609 q^{-111} -1701 q^{-112} -3180 q^{-113} -2289 q^{-114} -809 q^{-115} +627 q^{-116} +1386 q^{-117} +983 q^{-118} +359 q^{-119} -325 q^{-120} -623 q^{-121} -283 q^{-122} -74 q^{-123} +97 q^{-124} +201 q^{-125} +102 q^{-126} +64 q^{-127} -71 q^{-128} -128 q^{-129} +9 q^{-130} +27 q^{-131} +12 q^{-132} +11 q^{-133} -10 q^{-134} +22 q^{-135} -9 q^{-136} -29 q^{-137} +15 q^{-138} +8 q^{-139} -3 q^{-141} -6 q^{-142} +7 q^{-143} - q^{-144} -3 q^{-145} +3 q^{-146} - q^{-147} </math>}} |
|||
{{Computer Talk Header}} |
{{Computer Talk Header}} |
||
Line 48: | Line 82: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[9, 29]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 29]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[16, 11, 17, 12], X[10, 4, 11, 3], X[2, 15, 3, 16], |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[16, 11, 17, 12], X[10, 4, 11, 3], X[2, 15, 3, 16], |
|||
X[14, 5, 15, 6], X[18, 8, 1, 7], X[4, 10, 5, 9], X[12, 17, 13, 18], |
X[14, 5, 15, 6], X[18, 8, 1, 7], X[4, 10, 5, 9], X[12, 17, 13, 18], |
||
X[8, 13, 9, 14]]</nowiki></pre></td></tr> |
X[8, 13, 9, 14]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 29]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 29]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -4, 3, -7, 5, -1, 6, -9, 7, -3, 2, -8, 9, -5, 4, -2, 8, -6]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[9, 29]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[6, 10, 14, 18, 4, 16, 8, 2, 12]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[9, 29]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {1, -2, -2, 3, -2, 1, -2, 3, -2}]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {1, -2, -2, 3, -2, 1, -2, 3, -2}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 29]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 9}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[9, 29]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 29]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_29_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[9, 29]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 3, 3, {4, 7}, 1}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 29]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 5 12 2 3 |
|||
-15 + t - -- + -- + 12 t - 5 t + t |
-15 + t - -- + -- + 12 t - 5 t + t |
||
2 t |
2 t |
||
t</nowiki></pre></td></tr> |
t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 29]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 29]][z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
|||
1 + z + z + z</nowiki></pre></td></tr> |
1 + z + z + z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 28], Knot[9, 29], Knot[10, 163], Knot[11, NonAlternating, 87]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{51, -2}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[9, 29]], KnotSignature[Knot[9, 29]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{51, -2}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[9, 29]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -6 3 6 8 8 9 2 3 |
|||
-7 - q + -- - -- + -- - -- + - + 5 q - 3 q + q |
-7 - q + -- - -- + -- - -- + - + 5 q - 3 q + q |
||
5 4 3 2 q |
5 4 3 2 q |
||
q q q q</nowiki></pre></td></tr> |
q q q q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 29]}</nowiki></pre></td></tr> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 29]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 29]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -18 -16 2 -12 2 4 -2 2 4 6 10 |
|||
-q + q - --- - q + --- + -- + q - 2 q + q - q + q |
-q + q - --- - q + --- + -- + q - 2 q + q - q + q |
||
14 10 6 |
14 10 6 |
||
q q q</nowiki></pre></td></tr> |
q q q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 29]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[9, 29]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 |
|||
-2 2 4 2 z 2 2 4 2 4 |
|||
-3 + a + 5 a - 2 a - 5 z + -- + 7 a z - 2 a z - 2 z + |
|||
2 |
|||
a |
|||
2 4 4 4 2 6 |
|||
4 a z - a z + a z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 29]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 |
|||
-2 2 4 z 3 5 2 3 z |
-2 2 4 z 3 5 2 3 z |
||
-3 - a - 5 a - 2 a - - - a z + 2 a z + 2 a z + 12 z + ---- + |
-3 - a - 5 a - 2 a - - - a z + 2 a z + 2 a z + 12 z + ---- + |
||
Line 112: | Line 178: | ||
3 7 8 2 8 |
3 7 8 2 8 |
||
6 a z + 2 z + 2 a z</nowiki></pre></td></tr> |
6 a z + 2 z + 2 a z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 29]], Vassiliev[3][Knot[9, 29]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 29]], Vassiliev[3][Knot[9, 29]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{1, -2}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5 5 1 2 1 4 2 4 4 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[9, 29]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5 5 1 2 1 4 2 4 4 |
|||
-- + - + ------ + ------ + ----- + ----- + ----- + ----- + ----- + |
-- + - + ------ + ------ + ----- + ----- + ----- + ----- + ----- + |
||
3 q 13 5 11 4 9 4 9 3 7 3 7 2 5 2 |
3 q 13 5 11 4 9 4 9 3 7 3 7 2 5 2 |
||
Line 124: | Line 192: | ||
5 3 q |
5 3 q |
||
q t q t</nowiki></pre></td></tr> |
q t q t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[9, 29], 2][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -17 3 3 4 16 15 12 42 29 27 65 |
|||
4 + q - --- + --- + --- - --- + --- + --- - --- + -- + -- - -- + |
|||
16 15 14 13 12 11 10 9 8 7 |
|||
q q q q q q q q q q |
|||
32 43 71 20 51 60 2 3 4 5 |
|||
-- + -- - -- + -- + -- - -- + 46 q - 37 q - 8 q + 30 q - 13 q - |
|||
6 5 4 3 2 q |
|||
q q q q q |
|||
6 7 8 9 10 |
|||
9 q + 11 q - q - 3 q + q</nowiki></pre></td></tr> |
|||
</table> |
</table> |
||
See/edit the [[Rolfsen_Splice_Template]]. |
|||
[[Category:Knot Page]] |
[[Category:Knot Page]] |
Revision as of 17:11, 29 August 2005
|
|
Visit 9 29's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 9 29's page at Knotilus! Visit 9 29's page at the original Knot Atlas! |
Knot presentations
Planar diagram presentation | X6271 X16,11,17,12 X10,4,11,3 X2,15,3,16 X14,5,15,6 X18,8,1,7 X4,10,5,9 X12,17,13,18 X8,13,9,14 |
Gauss code | 1, -4, 3, -7, 5, -1, 6, -9, 7, -3, 2, -8, 9, -5, 4, -2, 8, -6 |
Dowker-Thistlethwaite code | 6 10 14 18 4 16 8 2 12 |
Conway Notation | [.2.20.2] |
Length is 9, width is 4. Braid index is 4. |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["9 29"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 51, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {9_28, 10_163, K11n87, ...}
Same Jones Polynomial (up to mirroring, ): {...}
Vassiliev invariants
V2 and V3: | (1, -2) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 9 29. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
See/edit the Rolfsen_Splice_Template.