9 36: Difference between revisions
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 16: | Line 16: | ||
{{Knot Presentations}} |
{{Knot Presentations}} |
||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
|||
</table> |
|||
[[Invariants from Braid Theory|Length]] is 9, width is 4. |
|||
[[Invariants from Braid Theory|Braid index]] is 4. |
|||
</td> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
{{3D Invariants}} |
||
{{4D Invariants}} |
{{4D Invariants}} |
||
{{Polynomial Invariants}} |
{{Polynomial Invariants}} |
||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{[[K11n16]], ...} |
|||
{{Vassiliev Invariants}} |
{{Vassiliev Invariants}} |
||
Line 41: | Line 72: | ||
<tr align=center><td>-1</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-1</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
</table>}} |
</table>}} |
||
{{Display Coloured Jones|J2=<math>q^{25}-2 q^{24}+q^{23}+3 q^{22}-8 q^{21}+6 q^{20}+7 q^{19}-20 q^{18}+13 q^{17}+14 q^{16}-32 q^{15}+15 q^{14}+21 q^{13}-35 q^{12}+10 q^{11}+25 q^{10}-30 q^9+2 q^8+24 q^7-19 q^6-4 q^5+17 q^4-8 q^3-5 q^2+7 q-1-2 q^{-1} + q^{-2} </math>|J3=<math>-q^{48}+2 q^{47}-q^{46}-q^{44}+3 q^{43}-3 q^{42}-q^{41}+5 q^{40}+2 q^{39}-14 q^{38}+q^{37}+23 q^{36}+2 q^{35}-40 q^{34}-5 q^{33}+57 q^{32}+10 q^{31}-67 q^{30}-24 q^{29}+79 q^{28}+32 q^{27}-77 q^{26}-46 q^{25}+75 q^{24}+51 q^{23}-62 q^{22}-61 q^{21}+51 q^{20}+63 q^{19}-34 q^{18}-68 q^{17}+22 q^{16}+64 q^{15}-3 q^{14}-63 q^{13}-8 q^{12}+53 q^{11}+22 q^{10}-44 q^9-26 q^8+27 q^7+32 q^6-17 q^5-25 q^4+4 q^3+20 q^2+q-11-4 q^{-1} +6 q^{-2} +2 q^{-3} - q^{-4} -2 q^{-5} + q^{-6} </math>|J4=<math>q^{78}-2 q^{77}+q^{76}-2 q^{74}+6 q^{73}-6 q^{72}+3 q^{71}-2 q^{70}-7 q^{69}+19 q^{68}-10 q^{67}+4 q^{66}-14 q^{65}-21 q^{64}+52 q^{63}+5 q^{62}+3 q^{61}-61 q^{60}-66 q^{59}+111 q^{58}+68 q^{57}+29 q^{56}-144 q^{55}-177 q^{54}+155 q^{53}+175 q^{52}+117 q^{51}-210 q^{50}-326 q^{49}+139 q^{48}+251 q^{47}+235 q^{46}-200 q^{45}-431 q^{44}+76 q^{43}+245 q^{42}+314 q^{41}-135 q^{40}-445 q^{39}+20 q^{38}+175 q^{37}+329 q^{36}-56 q^{35}-393 q^{34}-18 q^{33}+84 q^{32}+306 q^{31}+21 q^{30}-308 q^{29}-51 q^{28}-16 q^{27}+263 q^{26}+97 q^{25}-201 q^{24}-73 q^{23}-113 q^{22}+186 q^{21}+146 q^{20}-75 q^{19}-51 q^{18}-177 q^{17}+75 q^{16}+134 q^{15}+27 q^{14}+14 q^{13}-164 q^{12}-21 q^{11}+61 q^{10}+56 q^9+71 q^8-89 q^7-48 q^6-7 q^5+24 q^4+69 q^3-20 q^2-22 q-23-6 q^{-1} +32 q^{-2} +2 q^{-3} -9 q^{-5} -8 q^{-6} +7 q^{-7} + q^{-8} +2 q^{-9} - q^{-10} -2 q^{-11} + q^{-12} </math>|J5=<math>-q^{115}+2 q^{114}-q^{113}+2 q^{111}-3 q^{110}-3 q^{109}+6 q^{108}-2 q^{106}+4 q^{105}-8 q^{104}-7 q^{103}+15 q^{102}+9 q^{101}-4 q^{100}-9 q^{99}-26 q^{98}-10 q^{97}+41 q^{96}+56 q^{95}+8 q^{94}-63 q^{93}-114 q^{92}-46 q^{91}+120 q^{90}+211 q^{89}+105 q^{88}-164 q^{87}-365 q^{86}-227 q^{85}+212 q^{84}+551 q^{83}+407 q^{82}-198 q^{81}-767 q^{80}-664 q^{79}+141 q^{78}+957 q^{77}+954 q^{76}-5 q^{75}-1088 q^{74}-1248 q^{73}-203 q^{72}+1160 q^{71}+1499 q^{70}+411 q^{69}-1123 q^{68}-1663 q^{67}-648 q^{66}+1043 q^{65}+1761 q^{64}+796 q^{63}-906 q^{62}-1745 q^{61}-934 q^{60}+770 q^{59}+1701 q^{58}+976 q^{57}-635 q^{56}-1584 q^{55}-1012 q^{54}+508 q^{53}+1479 q^{52}+997 q^{51}-383 q^{50}-1336 q^{49}-1005 q^{48}+256 q^{47}+1206 q^{46}+984 q^{45}-108 q^{44}-1037 q^{43}-988 q^{42}-49 q^{41}+869 q^{40}+941 q^{39}+217 q^{38}-642 q^{37}-900 q^{36}-367 q^{35}+421 q^{34}+777 q^{33}+489 q^{32}-167 q^{31}-634 q^{30}-548 q^{29}-45 q^{28}+420 q^{27}+541 q^{26}+231 q^{25}-218 q^{24}-447 q^{23}-327 q^{22}-q^{21}+312 q^{20}+359 q^{19}+134 q^{18}-141 q^{17}-288 q^{16}-236 q^{15}-q^{14}+199 q^{13}+225 q^{12}+103 q^{11}-69 q^{10}-188 q^9-145 q^8-10 q^7+102 q^6+134 q^5+67 q^4-38 q^3-91 q^2-74 q-13+49 q^{-1} +61 q^{-2} +23 q^{-3} -11 q^{-4} -33 q^{-5} -30 q^{-6} -2 q^{-7} +19 q^{-8} +13 q^{-9} +6 q^{-10} -11 q^{-12} -6 q^{-13} +3 q^{-14} +2 q^{-15} + q^{-16} +2 q^{-17} - q^{-18} -2 q^{-19} + q^{-20} </math>|J6=<math>q^{159}-2 q^{158}+q^{157}-2 q^{155}+3 q^{154}+3 q^{152}-9 q^{151}+4 q^{150}+5 q^{149}-9 q^{148}+7 q^{147}+q^{146}+2 q^{145}-22 q^{144}+14 q^{143}+23 q^{142}-17 q^{141}+7 q^{140}-8 q^{139}-20 q^{138}-50 q^{137}+49 q^{136}+91 q^{135}+4 q^{134}+7 q^{133}-74 q^{132}-140 q^{131}-147 q^{130}+126 q^{129}+324 q^{128}+197 q^{127}+80 q^{126}-272 q^{125}-576 q^{124}-535 q^{123}+171 q^{122}+880 q^{121}+896 q^{120}+532 q^{119}-526 q^{118}-1563 q^{117}-1660 q^{116}-215 q^{115}+1649 q^{114}+2360 q^{113}+1889 q^{112}-320 q^{111}-2866 q^{110}-3714 q^{109}-1619 q^{108}+1932 q^{107}+4143 q^{106}+4224 q^{105}+980 q^{104}-3574 q^{103}-5994 q^{102}-3962 q^{101}+1053 q^{100}+5152 q^{99}+6605 q^{98}+3142 q^{97}-3008 q^{96}-7301 q^{95}-6185 q^{94}-650 q^{93}+4821 q^{92}+7869 q^{91}+5049 q^{90}-1629 q^{89}-7217 q^{88}-7257 q^{87}-2117 q^{86}+3715 q^{85}+7801 q^{84}+5887 q^{83}-398 q^{82}-6372 q^{81}-7173 q^{80}-2778 q^{79}+2663 q^{78}+7061 q^{77}+5837 q^{76}+329 q^{75}-5445 q^{74}-6593 q^{73}-2950 q^{72}+1847 q^{71}+6211 q^{70}+5538 q^{69}+906 q^{68}-4520 q^{67}-5963 q^{66}-3170 q^{65}+929 q^{64}+5266 q^{63}+5298 q^{62}+1723 q^{61}-3306 q^{60}-5211 q^{59}-3559 q^{58}-342 q^{57}+3938 q^{56}+4911 q^{55}+2725 q^{54}-1636 q^{53}-3997 q^{52}-3749 q^{51}-1783 q^{50}+2085 q^{49}+3939 q^{48}+3405 q^{47}+222 q^{46}-2163 q^{45}-3196 q^{44}-2783 q^{43}+36 q^{42}+2210 q^{41}+3149 q^{40}+1556 q^{39}-113 q^{38}-1741 q^{37}-2679 q^{36}-1399 q^{35}+225 q^{34}+1847 q^{33}+1679 q^{32}+1255 q^{31}-4 q^{30}-1467 q^{29}-1540 q^{28}-1026 q^{27}+263 q^{26}+705 q^{25}+1311 q^{24}+974 q^{23}-55 q^{22}-651 q^{21}-1006 q^{20}-551 q^{19}-358 q^{18}+482 q^{17}+801 q^{16}+553 q^{15}+208 q^{14}-284 q^{13}-370 q^{12}-649 q^{11}-190 q^{10}+160 q^9+328 q^8+364 q^7+185 q^6+75 q^5-326 q^4-247 q^3-156 q^2-12 q+110+165 q^{-1} +202 q^{-2} -36 q^{-3} -56 q^{-4} -104 q^{-5} -80 q^{-6} -44 q^{-7} +24 q^{-8} +103 q^{-9} +22 q^{-10} +24 q^{-11} -13 q^{-12} -24 q^{-13} -39 q^{-14} -16 q^{-15} +24 q^{-16} +3 q^{-17} +14 q^{-18} +5 q^{-19} +3 q^{-20} -11 q^{-21} -8 q^{-22} +5 q^{-23} -2 q^{-24} +2 q^{-25} + q^{-26} +2 q^{-27} - q^{-28} -2 q^{-29} + q^{-30} </math>|J7=<math>-q^{210}+2 q^{209}-q^{208}+2 q^{206}-3 q^{205}+5 q^{201}-7 q^{200}+10 q^{198}-7 q^{197}-2 q^{195}+10 q^{193}-23 q^{192}-2 q^{191}+30 q^{190}+2 q^{189}+8 q^{188}-13 q^{187}-16 q^{186}-2 q^{185}-59 q^{184}-4 q^{183}+80 q^{182}+66 q^{181}+72 q^{180}-25 q^{179}-111 q^{178}-128 q^{177}-195 q^{176}-22 q^{175}+234 q^{174}+355 q^{173}+396 q^{172}+55 q^{171}-391 q^{170}-691 q^{169}-824 q^{168}-287 q^{167}+598 q^{166}+1339 q^{165}+1627 q^{164}+762 q^{163}-796 q^{162}-2263 q^{161}-2972 q^{160}-1774 q^{159}+793 q^{158}+3493 q^{157}+5011 q^{156}+3568 q^{155}-291 q^{154}-4852 q^{153}-7804 q^{152}-6380 q^{151}-985 q^{150}+5979 q^{149}+11075 q^{148}+10283 q^{147}+3487 q^{146}-6418 q^{145}-14563 q^{144}-15080 q^{143}-7200 q^{142}+5766 q^{141}+17506 q^{140}+20258 q^{139}+12093 q^{138}-3700 q^{137}-19423 q^{136}-25223 q^{135}-17618 q^{134}+357 q^{133}+19939 q^{132}+29168 q^{131}+23038 q^{130}+3952 q^{129}-18853 q^{128}-31698 q^{127}-27838 q^{126}-8519 q^{125}+16685 q^{124}+32629 q^{123}+31204 q^{122}+12699 q^{121}-13680 q^{120}-32121 q^{119}-33229 q^{118}-16054 q^{117}+10735 q^{116}+30705 q^{115}+33766 q^{114}+18191 q^{113}-8068 q^{112}-28724 q^{111}-33353 q^{110}-19364 q^{109}+6072 q^{108}+26814 q^{107}+32294 q^{106}+19632 q^{105}-4667 q^{104}-24989 q^{103}-31027 q^{102}-19553 q^{101}+3673 q^{100}+23484 q^{99}+29786 q^{98}+19309 q^{97}-2816 q^{96}-22038 q^{95}-28674 q^{94}-19251 q^{93}+1810 q^{92}+20571 q^{91}+27645 q^{90}+19425 q^{89}-448 q^{88}-18811 q^{87}-26599 q^{86}-19868 q^{85}-1347 q^{84}+16644 q^{83}+25314 q^{82}+20431 q^{81}+3602 q^{80}-13898 q^{79}-23673 q^{78}-20966 q^{77}-6153 q^{76}+10627 q^{75}+21432 q^{74}+21134 q^{73}+8861 q^{72}-6795 q^{71}-18529 q^{70}-20805 q^{69}-11345 q^{68}+2718 q^{67}+14866 q^{66}+19571 q^{65}+13324 q^{64}+1475 q^{63}-10618 q^{62}-17429 q^{61}-14381 q^{60}-5224 q^{59}+5978 q^{58}+14230 q^{57}+14294 q^{56}+8187 q^{55}-1397 q^{54}-10277 q^{53}-12873 q^{52}-9924 q^{51}-2639 q^{50}+5923 q^{49}+10292 q^{48}+10201 q^{47}+5568 q^{46}-1731 q^{45}-6854 q^{44}-9031 q^{43}-7126 q^{42}-1705 q^{41}+3248 q^{40}+6739 q^{39}+7095 q^{38}+3871 q^{37}+47 q^{36}-3839 q^{35}-5856 q^{34}-4688 q^{33}-2293 q^{32}+1104 q^{31}+3757 q^{30}+4129 q^{29}+3389 q^{28}+1072 q^{27}-1580 q^{26}-2836 q^{25}-3283 q^{24}-2149 q^{23}-197 q^{22}+1173 q^{21}+2391 q^{20}+2332 q^{19}+1230 q^{18}+150 q^{17}-1205 q^{16}-1771 q^{15}-1450 q^{14}-957 q^{13}+153 q^{12}+942 q^{11}+1134 q^{10}+1164 q^9+478 q^8-209 q^7-592 q^6-925 q^5-656 q^4-253 q^3+75 q^2+539 q+567+390 q^{-1} +192 q^{-2} -194 q^{-3} -300 q^{-4} -314 q^{-5} -301 q^{-6} -38 q^{-7} +117 q^{-8} +195 q^{-9} +232 q^{-10} +85 q^{-11} +17 q^{-12} -43 q^{-13} -148 q^{-14} -102 q^{-15} -57 q^{-16} +4 q^{-17} +74 q^{-18} +41 q^{-19} +40 q^{-20} +37 q^{-21} -15 q^{-22} -27 q^{-23} -34 q^{-24} -22 q^{-25} +13 q^{-26} + q^{-27} +5 q^{-28} +16 q^{-29} +5 q^{-30} +2 q^{-31} -8 q^{-32} -8 q^{-33} +3 q^{-34} -2 q^{-36} +2 q^{-37} + q^{-38} +2 q^{-39} - q^{-40} -2 q^{-41} + q^{-42} </math>}} |
|||
{{Computer Talk Header}} |
{{Computer Talk Header}} |
||
Line 48: | Line 82: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[9, 36]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 36]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[7, 10, 8, 11], X[3, 9, 4, 8], X[9, 3, 10, 2], |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[7, 10, 8, 11], X[3, 9, 4, 8], X[9, 3, 10, 2], |
|||
X[11, 17, 12, 16], X[5, 15, 6, 14], X[15, 7, 16, 6], |
X[11, 17, 12, 16], X[5, 15, 6, 14], X[15, 7, 16, 6], |
||
X[13, 1, 14, 18], X[17, 13, 18, 12]]</nowiki></pre></td></tr> |
X[13, 1, 14, 18], X[17, 13, 18, 12]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 36]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 36]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 4, -3, 1, -6, 7, -2, 3, -4, 2, -5, 9, -8, 6, -7, 5, -9, 8]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[9, 36]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 8, 14, 10, 2, 16, 18, 6, 12]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[9, 36]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {1, 1, 1, -2, 1, 1, 3, -2, 3}]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {1, 1, 1, -2, 1, 1, 3, -2, 3}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 36]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 9}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[9, 36]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 36]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_36_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[9, 36]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 3, 3, {4, 7}, 1}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 36]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 5 8 2 3 |
|||
9 - t + -- - - - 8 t + 5 t - t |
9 - t + -- - - - 8 t + 5 t - t |
||
2 t |
2 t |
||
t</nowiki></pre></td></tr> |
t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 36]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 36]][z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
|||
1 + 3 z - z - z</nowiki></pre></td></tr> |
1 + 3 z - z - z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 36]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{37, 4}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[9, 36]], KnotSignature[Knot[9, 36]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{37, 4}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[9, 36]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 3 4 5 6 7 8 9 |
|||
1 - 2 q + 4 q - 5 q + 6 q - 6 q + 6 q - 4 q + 2 q - q</nowiki></pre></td></tr> |
1 - 2 q + 4 q - 5 q + 6 q - 6 q + 6 q - 4 q + 2 q - q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 36], Knot[11, NonAlternating, 16]}</nowiki></pre></td></tr> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 36]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[9, 36]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4 6 8 10 12 14 16 18 20 22 26 |
|||
1 + q + q - q + q - 2 q + q + q + q + 2 q - q - q - |
1 + q + q - q + q - 2 q + q + q + q + 2 q - q - q - |
||
28 |
28 |
||
q</nowiki></pre></td></tr> |
q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 36]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[9, 36]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 2 4 4 4 6 |
|||
-2 4 3 2 z 6 z 5 z 3 z 2 z 4 z z z |
|||
-- + -- - -- + -- - -- + ---- - ---- + ---- + ---- - ---- + -- - -- |
|||
8 6 4 2 8 6 4 2 6 4 2 4 |
|||
a a a a a a a a a a a a</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 36]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 |
|||
-2 4 3 2 z z z 2 z z z 7 z 15 z |
-2 4 3 2 z z z 2 z z z 7 z 15 z |
||
-- - -- - -- - -- - --- + -- + -- - --- - -- - --- + ---- + ----- + |
-- - -- - -- - -- - --- + -- + -- - --- - -- - --- + ---- + ----- + |
||
Line 109: | Line 172: | ||
7 5 3 6 4 |
7 5 3 6 4 |
||
a a a a a</nowiki></pre></td></tr> |
a a a a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 36]], Vassiliev[3][Knot[9, 36]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 36]], Vassiliev[3][Knot[9, 36]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 7}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[9, 36]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 |
|||
3 5 1 q q 5 7 7 2 9 2 |
3 5 1 q q 5 7 7 2 9 2 |
||
3 q + 2 q + ---- + - + -- + 3 q t + 2 q t + 3 q t + 3 q t + |
3 q + 2 q + ---- + - + -- + 3 q t + 2 q t + 3 q t + 3 q t + |
||
Line 123: | Line 188: | ||
15 6 17 6 19 7 |
15 6 17 6 19 7 |
||
q t + q t + q t</nowiki></pre></td></tr> |
q t + q t + q t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[9, 36], 2][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -2 2 2 3 4 5 6 7 |
|||
-1 + q - - + 7 q - 5 q - 8 q + 17 q - 4 q - 19 q + 24 q + |
|||
q |
|||
8 9 10 11 12 13 14 15 |
|||
2 q - 30 q + 25 q + 10 q - 35 q + 21 q + 15 q - 32 q + |
|||
16 17 18 19 20 21 22 23 |
|||
14 q + 13 q - 20 q + 7 q + 6 q - 8 q + 3 q + q - |
|||
24 25 |
|||
2 q + q</nowiki></pre></td></tr> |
|||
</table> |
</table> |
||
See/edit the [[Rolfsen_Splice_Template]]. |
|||
[[Category:Knot Page]] |
[[Category:Knot Page]] |
Revision as of 17:11, 29 August 2005
|
|
Visit 9 36's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 9 36's page at Knotilus! Visit 9 36's page at the original Knot Atlas! |
Knot presentations
Planar diagram presentation | X1425 X7,10,8,11 X3948 X9,3,10,2 X11,17,12,16 X5,15,6,14 X15,7,16,6 X13,1,14,18 X17,13,18,12 |
Gauss code | -1, 4, -3, 1, -6, 7, -2, 3, -4, 2, -5, 9, -8, 6, -7, 5, -9, 8 |
Dowker-Thistlethwaite code | 4 8 14 10 2 16 18 6 12 |
Conway Notation | [22,3,2] |
Length is 9, width is 4. Braid index is 4. |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["9 36"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 37, 4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {...}
Same Jones Polynomial (up to mirroring, ): {K11n16, ...}
Vassiliev invariants
V2 and V3: | (3, 7) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 4 is the signature of 9 36. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
See/edit the Rolfsen_Splice_Template.