10 26: Difference between revisions
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 16: | Line 16: | ||
{{Knot Presentations}} |
{{Knot Presentations}} |
||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
|||
</table> |
|||
[[Invariants from Braid Theory|Length]] is 11, width is 4. |
|||
[[Invariants from Braid Theory|Braid index]] is 4. |
|||
</td> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
{{3D Invariants}} |
||
{{4D Invariants}} |
{{4D Invariants}} |
||
{{Polynomial Invariants}} |
{{Polynomial Invariants}} |
||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
{{Vassiliev Invariants}} |
||
Line 42: | Line 73: | ||
<tr align=center><td>-9</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-9</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
</table>}} |
</table>}} |
||
{{Display Coloured Jones|J2=<math>q^{18}-2 q^{17}+6 q^{15}-8 q^{14}-4 q^{13}+21 q^{12}-17 q^{11}-18 q^{10}+47 q^9-23 q^8-42 q^7+73 q^6-19 q^5-67 q^4+85 q^3-8 q^2-78 q+78+2 q^{-1} -67 q^{-2} +53 q^{-3} +7 q^{-4} -41 q^{-5} +25 q^{-6} +6 q^{-7} -16 q^{-8} +7 q^{-9} +2 q^{-10} -3 q^{-11} + q^{-12} </math>|J3=<math>q^{36}-2 q^{35}+2 q^{33}+3 q^{32}-7 q^{31}-4 q^{30}+9 q^{29}+14 q^{28}-18 q^{27}-24 q^{26}+19 q^{25}+49 q^{24}-22 q^{23}-76 q^{22}+11 q^{21}+113 q^{20}+9 q^{19}-150 q^{18}-39 q^{17}+180 q^{16}+85 q^{15}-207 q^{14}-133 q^{13}+219 q^{12}+187 q^{11}-224 q^{10}-237 q^9+214 q^8+284 q^7-199 q^6-318 q^5+178 q^4+335 q^3-144 q^2-343 q+117+322 q^{-1} -77 q^{-2} -295 q^{-3} +51 q^{-4} +244 q^{-5} -19 q^{-6} -197 q^{-7} +5 q^{-8} +141 q^{-9} +9 q^{-10} -100 q^{-11} -8 q^{-12} +60 q^{-13} +11 q^{-14} -37 q^{-15} -7 q^{-16} +20 q^{-17} +4 q^{-18} -10 q^{-19} - q^{-20} +3 q^{-21} +2 q^{-22} -3 q^{-23} + q^{-24} </math>|J4=<math>q^{60}-2 q^{59}+2 q^{57}-q^{56}+4 q^{55}-9 q^{54}+10 q^{52}-3 q^{51}+14 q^{50}-30 q^{49}-11 q^{48}+28 q^{47}+8 q^{46}+51 q^{45}-74 q^{44}-62 q^{43}+29 q^{42}+41 q^{41}+173 q^{40}-103 q^{39}-175 q^{38}-65 q^{37}+37 q^{36}+417 q^{35}-18 q^{34}-273 q^{33}-296 q^{32}-135 q^{31}+695 q^{30}+231 q^{29}-206 q^{28}-564 q^{27}-530 q^{26}+834 q^{25}+552 q^{24}+95 q^{23}-714 q^{22}-1046 q^{21}+758 q^{20}+801 q^{19}+541 q^{18}-689 q^{17}-1526 q^{16}+520 q^{15}+920 q^{14}+1002 q^{13}-543 q^{12}-1877 q^{11}+220 q^{10}+921 q^9+1372 q^8-328 q^7-2038 q^6-84 q^5+798 q^4+1577 q^3-66 q^2-1949 q-330+537 q^{-1} +1532 q^{-2} +196 q^{-3} -1579 q^{-4} -436 q^{-5} +198 q^{-6} +1220 q^{-7} +351 q^{-8} -1042 q^{-9} -353 q^{-10} -68 q^{-11} +764 q^{-12} +334 q^{-13} -551 q^{-14} -172 q^{-15} -159 q^{-16} +373 q^{-17} +207 q^{-18} -246 q^{-19} -32 q^{-20} -122 q^{-21} +147 q^{-22} +93 q^{-23} -101 q^{-24} +14 q^{-25} -61 q^{-26} +51 q^{-27} +33 q^{-28} -39 q^{-29} +14 q^{-30} -22 q^{-31} +14 q^{-32} +10 q^{-33} -12 q^{-34} +5 q^{-35} -5 q^{-36} +3 q^{-37} +2 q^{-38} -3 q^{-39} + q^{-40} </math>|J5=<math>q^{90}-2 q^{89}+2 q^{87}-q^{86}+2 q^{84}-5 q^{83}-q^{82}+9 q^{81}+q^{80}-6 q^{79}-13 q^{77}-5 q^{76}+26 q^{75}+22 q^{74}-3 q^{73}-18 q^{72}-51 q^{71}-39 q^{70}+45 q^{69}+93 q^{68}+73 q^{67}-7 q^{66}-147 q^{65}-191 q^{64}-38 q^{63}+181 q^{62}+314 q^{61}+213 q^{60}-163 q^{59}-502 q^{58}-437 q^{57}+25 q^{56}+606 q^{55}+806 q^{54}+272 q^{53}-652 q^{52}-1158 q^{51}-739 q^{50}+452 q^{49}+1490 q^{48}+1360 q^{47}-45 q^{46}-1643 q^{45}-2015 q^{44}-631 q^{43}+1527 q^{42}+2634 q^{41}+1511 q^{40}-1137 q^{39}-3071 q^{38}-2462 q^{37}+417 q^{36}+3257 q^{35}+3447 q^{34}+496 q^{33}-3180 q^{32}-4281 q^{31}-1568 q^{30}+2828 q^{29}+4993 q^{28}+2659 q^{27}-2307 q^{26}-5484 q^{25}-3739 q^{24}+1671 q^{23}+5837 q^{22}+4696 q^{21}-974 q^{20}-6040 q^{19}-5572 q^{18}+287 q^{17}+6150 q^{16}+6316 q^{15}+387 q^{14}-6152 q^{13}-6949 q^{12}-1057 q^{11}+6039 q^{10}+7485 q^9+1702 q^8-5807 q^7-7803 q^6-2376 q^5+5351 q^4+7995 q^3+3001 q^2-4759 q-7836-3559 q^{-1} +3883 q^{-2} +7477 q^{-3} +3966 q^{-4} -2970 q^{-5} -6708 q^{-6} -4157 q^{-7} +1925 q^{-8} +5771 q^{-9} +4070 q^{-10} -1029 q^{-11} -4588 q^{-12} -3727 q^{-13} +244 q^{-14} +3452 q^{-15} +3154 q^{-16} +231 q^{-17} -2326 q^{-18} -2484 q^{-19} -525 q^{-20} +1489 q^{-21} +1786 q^{-22} +540 q^{-23} -806 q^{-24} -1179 q^{-25} -500 q^{-26} +427 q^{-27} +716 q^{-28} +336 q^{-29} -175 q^{-30} -393 q^{-31} -222 q^{-32} +72 q^{-33} +206 q^{-34} +117 q^{-35} -27 q^{-36} -100 q^{-37} -60 q^{-38} +20 q^{-39} +41 q^{-40} +26 q^{-41} - q^{-42} -29 q^{-43} -16 q^{-44} +15 q^{-45} +10 q^{-46} -4 q^{-47} +8 q^{-48} -8 q^{-49} -11 q^{-50} +10 q^{-51} +4 q^{-52} -6 q^{-53} +3 q^{-54} + q^{-55} -5 q^{-56} +3 q^{-57} +2 q^{-58} -3 q^{-59} + q^{-60} </math>|J6=<math>q^{126}-2 q^{125}+2 q^{123}-q^{122}-2 q^{120}+6 q^{119}-6 q^{118}-2 q^{117}+11 q^{116}-3 q^{115}-4 q^{114}-14 q^{113}+17 q^{112}-11 q^{111}-5 q^{110}+39 q^{109}+5 q^{108}-10 q^{107}-56 q^{106}+19 q^{105}-38 q^{104}-19 q^{103}+111 q^{102}+74 q^{101}+32 q^{100}-125 q^{99}-21 q^{98}-180 q^{97}-146 q^{96}+182 q^{95}+276 q^{94}+297 q^{93}-40 q^{92}+8 q^{91}-535 q^{90}-663 q^{89}-105 q^{88}+400 q^{87}+886 q^{86}+617 q^{85}+707 q^{84}-701 q^{83}-1620 q^{82}-1354 q^{81}-445 q^{80}+1073 q^{79}+1762 q^{78}+2839 q^{77}+603 q^{76}-1846 q^{75}-3253 q^{74}-3091 q^{73}-875 q^{72}+1671 q^{71}+5699 q^{70}+4221 q^{69}+819 q^{68}-3447 q^{67}-6282 q^{66}-5716 q^{65}-2183 q^{64}+6247 q^{63}+8317 q^{62}+6902 q^{61}+849 q^{60}-6364 q^{59}-11004 q^{58}-9989 q^{57}+1541 q^{56}+8808 q^{55}+13402 q^{54}+9446 q^{53}-478 q^{52}-12397 q^{51}-18276 q^{50}-7858 q^{49}+3090 q^{48}+15938 q^{47}+18619 q^{46}+10345 q^{45}-7659 q^{44}-22779 q^{43}-18115 q^{42}-7413 q^{41}+12715 q^{40}+24440 q^{39}+22182 q^{38}+1482 q^{37}-22100 q^{36}-25658 q^{35}-18883 q^{34}+5635 q^{33}+25911 q^{32}+31729 q^{31}+11443 q^{30}-18097 q^{29}-29698 q^{28}-28415 q^{27}-2122 q^{26}+24733 q^{25}+38251 q^{24}+19818 q^{23}-13356 q^{22}-31571 q^{21}-35451 q^{20}-8775 q^{19}+22785 q^{18}+42667 q^{17}+26403 q^{16}-8864 q^{15}-32380 q^{14}-40746 q^{13}-14621 q^{12}+20206 q^{11}+45409 q^{10}+32020 q^9-3705 q^8-31467 q^7-44351 q^6-20643 q^5+15511 q^4+45193 q^3+36470 q^2+3228 q-26904-44552 q^{-1} -26330 q^{-2} +7636 q^{-3} +39858 q^{-4} +37603 q^{-5} +10926 q^{-6} -17871 q^{-7} -39064 q^{-8} -28980 q^{-9} -1762 q^{-10} +29034 q^{-11} +32992 q^{-12} +16016 q^{-13} -6794 q^{-14} -27995 q^{-15} -25997 q^{-16} -8665 q^{-17} +16005 q^{-18} +23124 q^{-19} +15693 q^{-20} +1745 q^{-21} -15209 q^{-22} -18130 q^{-23} -10219 q^{-24} +5736 q^{-25} +12094 q^{-26} +10841 q^{-27} +4982 q^{-28} -5564 q^{-29} -9403 q^{-30} -7460 q^{-31} +724 q^{-32} +4225 q^{-33} +5165 q^{-34} +4105 q^{-35} -931 q^{-36} -3431 q^{-37} -3749 q^{-38} -347 q^{-39} +669 q^{-40} +1516 q^{-41} +2098 q^{-42} +232 q^{-43} -809 q^{-44} -1349 q^{-45} -61 q^{-46} -183 q^{-47} +130 q^{-48} +762 q^{-49} +175 q^{-50} -108 q^{-51} -391 q^{-52} +160 q^{-53} -152 q^{-54} -117 q^{-55} +237 q^{-56} +35 q^{-57} -15 q^{-58} -126 q^{-59} +138 q^{-60} -48 q^{-61} -77 q^{-62} +79 q^{-63} +2 q^{-64} -9 q^{-65} -53 q^{-66} +64 q^{-67} -11 q^{-68} -30 q^{-69} +28 q^{-70} - q^{-71} - q^{-72} -22 q^{-73} +21 q^{-74} -12 q^{-76} +9 q^{-77} - q^{-78} + q^{-79} -5 q^{-80} +3 q^{-81} +2 q^{-82} -3 q^{-83} + q^{-84} </math>|J7=Not Available}} |
|||
{{Computer Talk Header}} |
{{Computer Talk Header}} |
||
Line 49: | Line 83: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[10, 26]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 26]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[16, 8, 17, 7], X[12, 3, 13, 4], X[2, 15, 3, 16], |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[16, 8, 17, 7], X[12, 3, 13, 4], X[2, 15, 3, 16], |
|||
X[14, 5, 15, 6], X[4, 13, 5, 14], X[20, 12, 1, 11], X[8, 20, 9, 19], |
X[14, 5, 15, 6], X[4, 13, 5, 14], X[20, 12, 1, 11], X[8, 20, 9, 19], |
||
X[18, 10, 19, 9], X[10, 18, 11, 17]]</nowiki></pre></td></tr> |
X[18, 10, 19, 9], X[10, 18, 11, 17]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 26]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 26]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -4, 3, -6, 5, -1, 2, -8, 9, -10, 7, -3, 6, -5, 4, -2, 10, |
|||
-9, 8, -7]</nowiki></pre></td></tr> |
-9, 8, -7]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[10, 26]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 26]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[6, 12, 14, 16, 18, 20, 4, 2, 10, 8]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 26]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {-1, -1, -1, 2, -1, 2, 2, 2, 3, -2, 3}]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {-1, -1, -1, 2, -1, 2, 2, 2, 3, -2, 3}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 26]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 11}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 26]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 26]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_26_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 26]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 1, 3, 2, NotAvailable, 1}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 26]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 7 13 2 3 |
|||
17 - -- + -- - -- - 13 t + 7 t - 2 t |
17 - -- + -- - -- - 13 t + 7 t - 2 t |
||
3 2 t |
3 2 t |
||
t t</nowiki></pre></td></tr> |
t t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 26]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 26]][z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
|||
1 - 3 z - 5 z - 2 z</nowiki></pre></td></tr> |
1 - 3 z - 5 z - 2 z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 26]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{61, 0}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 26]], KnotSignature[Knot[10, 26]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{61, 0}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 26]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 3 6 8 2 3 4 5 6 |
|||
10 + q - -- + -- - - - 10 q + 9 q - 7 q + 4 q - 2 q + q |
10 + q - -- + -- - - - 10 q + 9 q - 7 q + 4 q - 2 q + q |
||
3 2 q |
3 2 q |
||
q q</nowiki></pre></td></tr> |
q q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 26]}</nowiki></pre></td></tr> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 26]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 26]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -12 -10 -8 -6 -4 3 2 4 6 8 10 |
|||
-1 + q - q + q + q - q + -- + q - q - 2 q + q - 2 q + |
-1 + q - q + q + q - q + -- + q - q - 2 q + q - 2 q + |
||
2 |
2 |
||
Line 92: | Line 147: | ||
12 14 18 |
12 14 18 |
||
q + q + q</nowiki></pre></td></tr> |
q + q + q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 26]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 26]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 4 4 |
|||
2 3 2 2 3 z 6 z 2 2 4 z 4 z |
|||
1 + -- - -- + a - 2 z + ---- - ---- + 2 a z - 3 z + -- - ---- + |
|||
4 2 4 2 4 2 |
|||
a a a a a a |
|||
6 |
|||
2 4 6 z |
|||
a z - z - -- |
|||
2 |
|||
a</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 26]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 |
|||
2 3 2 2 z 2 z z 2 4 z 4 z 12 z |
2 3 2 2 z 2 z z 2 4 z 4 z 12 z |
||
1 + -- + -- - a - --- - --- - - - a z + z + ---- - ---- - ----- + |
1 + -- + -- - a - --- - --- - - - a z + z + ---- - ---- - ----- + |
||
Line 122: | Line 191: | ||
4 2 3 a |
4 2 3 a |
||
a a a</nowiki></pre></td></tr> |
a a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 26]], Vassiliev[3][Knot[10, 26]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 26]], Vassiliev[3][Knot[10, 26]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{-3, -2}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>6 1 2 1 4 2 4 4 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 26]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>6 1 2 1 4 2 4 4 |
|||
- + 5 q + ----- + ----- + ----- + ----- + ----- + ---- + --- + 5 q t + |
- + 5 q + ----- + ----- + ----- + ----- + ----- + ---- + --- + 5 q t + |
||
q 9 4 7 3 5 3 5 2 3 2 3 q t |
q 9 4 7 3 5 3 5 2 3 2 3 q t |
||
Line 135: | Line 206: | ||
9 5 11 5 13 6 |
9 5 11 5 13 6 |
||
q t + q t + q t</nowiki></pre></td></tr> |
q t + q t + q t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 26], 2][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -12 3 2 7 16 6 25 41 7 53 67 2 |
|||
78 + q - --- + --- + -- - -- + -- + -- - -- + -- + -- - -- + - - |
|||
11 10 9 8 7 6 5 4 3 2 q |
|||
q q q q q q q q q q |
|||
2 3 4 5 6 7 8 9 |
|||
78 q - 8 q + 85 q - 67 q - 19 q + 73 q - 42 q - 23 q + 47 q - |
|||
10 11 12 13 14 15 17 18 |
|||
18 q - 17 q + 21 q - 4 q - 8 q + 6 q - 2 q + q</nowiki></pre></td></tr> |
|||
</table> |
</table> |
||
See/edit the [[Rolfsen_Splice_Template]]. |
|||
[[Category:Knot Page]] |
[[Category:Knot Page]] |
Revision as of 17:15, 29 August 2005
|
|
Visit 10 26's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 26's page at Knotilus! Visit 10 26's page at the original Knot Atlas! |
Knot presentations
Planar diagram presentation | X6271 X16,8,17,7 X12,3,13,4 X2,15,3,16 X14,5,15,6 X4,13,5,14 X20,12,1,11 X8,20,9,19 X18,10,19,9 X10,18,11,17 |
Gauss code | 1, -4, 3, -6, 5, -1, 2, -8, 9, -10, 7, -3, 6, -5, 4, -2, 10, -9, 8, -7 |
Dowker-Thistlethwaite code | 6 12 14 16 18 20 4 2 10 8 |
Conway Notation | [32113] |
Length is 11, width is 4. Braid index is 4. |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 26"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 61, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {...}
Same Jones Polynomial (up to mirroring, ): {...}
Vassiliev invariants
V2 and V3: | (-3, -2) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 10 26. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 | Not Available |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
See/edit the Rolfsen_Splice_Template.