10 27
|
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 27's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
| Planar diagram presentation | X4251 X12,4,13,3 X20,13,1,14 X14,5,15,6 X6,19,7,20 X18,9,19,10 X16,7,17,8 X8,17,9,18 X10,15,11,16 X2,12,3,11 |
| Gauss code | 1, -10, 2, -1, 4, -5, 7, -8, 6, -9, 10, -2, 3, -4, 9, -7, 8, -6, 5, -3 |
| Dowker-Thistlethwaite code | 4 12 14 16 18 2 20 10 8 6 |
| Conway Notation | [321112] |
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
|
![]() [{3, 11}, {2, 9}, {7, 10}, {9, 12}, {11, 5}, {1, 3}, {8, 6}, {4, 7}, {5, 8}, {6, 2}, {12, 4}, {10, 1}] |
[edit Notes on presentations of 10 27]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 27"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X4251 X12,4,13,3 X20,13,1,14 X14,5,15,6 X6,19,7,20 X18,9,19,10 X16,7,17,8 X8,17,9,18 X10,15,11,16 X2,12,3,11 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -10, 2, -1, 4, -5, 7, -8, 6, -9, 10, -2, 3, -4, 9, -7, 8, -6, 5, -3 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 12 14 16 18 2 20 10 8 6 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[321112] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 11, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{3, 11}, {2, 9}, {7, 10}, {9, 12}, {11, 5}, {1, 3}, {8, 6}, {4, 7}, {5, 8}, {6, 2}, {12, 4}, {10, 1}] |
In[14]:=
|
Draw[ap]
|
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | |
| 2 | |
| 3 | |
| 4 | |
| 5 |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | |
| 1,1 | |
| 2,0 |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | |
| 1,0,0 |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | |
| 1,0,0,0 |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | |
| 1,0 |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 27"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 71, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 27"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (2, -3) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 10 27. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^7-3 q^6+q^5+8 q^4-15 q^3+q^2+30 q-37-8 q^{-1} +70 q^{-2} -63 q^{-3} -30 q^{-4} +112 q^{-5} -75 q^{-6} -54 q^{-7} +131 q^{-8} -66 q^{-9} -66 q^{-10} +116 q^{-11} -41 q^{-12} -60 q^{-13} +77 q^{-14} -15 q^{-15} -39 q^{-16} +35 q^{-17} - q^{-18} -16 q^{-19} +9 q^{-20} + q^{-21} -3 q^{-22} + q^{-23} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{15}+3 q^{14}-q^{13}-4 q^{12}-q^{11}+12 q^{10}+q^9-24 q^8-5 q^7+43 q^6+16 q^5-73 q^4-35 q^3+105 q^2+79 q-150-129 q^{-1} +177 q^{-2} +219 q^{-3} -216 q^{-4} -297 q^{-5} +214 q^{-6} +406 q^{-7} -217 q^{-8} -490 q^{-9} +188 q^{-10} +571 q^{-11} -158 q^{-12} -618 q^{-13} +107 q^{-14} +647 q^{-15} -59 q^{-16} -639 q^{-17} +3 q^{-18} +607 q^{-19} +47 q^{-20} -545 q^{-21} -95 q^{-22} +467 q^{-23} +128 q^{-24} -374 q^{-25} -147 q^{-26} +281 q^{-27} +145 q^{-28} -192 q^{-29} -130 q^{-30} +119 q^{-31} +105 q^{-32} -68 q^{-33} -72 q^{-34} +31 q^{-35} +47 q^{-36} -13 q^{-37} -26 q^{-38} +4 q^{-39} +13 q^{-40} -2 q^{-41} -4 q^{-42} - q^{-43} +3 q^{-44} - q^{-45} } |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{26}-3 q^{25}+q^{24}+4 q^{23}-3 q^{22}+4 q^{21}-15 q^{20}+7 q^{19}+21 q^{18}-14 q^{17}+9 q^{16}-56 q^{15}+19 q^{14}+82 q^{13}-21 q^{12}+8 q^{11}-178 q^{10}+16 q^9+228 q^8+44 q^7+36 q^6-462 q^5-112 q^4+440 q^3+306 q^2+244 q-913-536 q^{-1} +539 q^{-2} +787 q^{-3} +846 q^{-4} -1340 q^{-5} -1291 q^{-6} +287 q^{-7} +1289 q^{-8} +1853 q^{-9} -1471 q^{-10} -2140 q^{-11} -357 q^{-12} +1549 q^{-13} +2978 q^{-14} -1234 q^{-15} -2766 q^{-16} -1154 q^{-17} +1478 q^{-18} +3843 q^{-19} -764 q^{-20} -2991 q^{-21} -1838 q^{-22} +1141 q^{-23} +4250 q^{-24} -218 q^{-25} -2804 q^{-26} -2266 q^{-27} +620 q^{-28} +4140 q^{-29} +323 q^{-30} -2233 q^{-31} -2385 q^{-32} -17 q^{-33} +3532 q^{-34} +761 q^{-35} -1381 q^{-36} -2136 q^{-37} -607 q^{-38} +2535 q^{-39} +935 q^{-40} -495 q^{-41} -1549 q^{-42} -906 q^{-43} +1443 q^{-44} +764 q^{-45} +103 q^{-46} -838 q^{-47} -810 q^{-48} +607 q^{-49} +409 q^{-50} +284 q^{-51} -304 q^{-52} -491 q^{-53} +184 q^{-54} +123 q^{-55} +200 q^{-56} -58 q^{-57} -209 q^{-58} +47 q^{-59} +7 q^{-60} +83 q^{-61} + q^{-62} -66 q^{-63} +16 q^{-64} -9 q^{-65} +22 q^{-66} +4 q^{-67} -16 q^{-68} +5 q^{-69} -3 q^{-70} +4 q^{-71} + q^{-72} -3 q^{-73} + q^{-74} } |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|




