10 28
|
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 28's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
| Planar diagram presentation | X1425 X3,10,4,11 X13,19,14,18 X5,15,6,14 X17,7,18,6 X7,17,8,16 X15,9,16,8 X11,1,12,20 X19,13,20,12 X9,2,10,3 |
| Gauss code | -1, 10, -2, 1, -4, 5, -6, 7, -10, 2, -8, 9, -3, 4, -7, 6, -5, 3, -9, 8 |
| Dowker-Thistlethwaite code | 4 10 14 16 2 20 18 8 6 12 |
| Conway Notation | [31312] |
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||||
Length is 12, width is 5, Braid index is 5 |
|
![]() [{12, 2}, {1, 10}, {4, 11}, {10, 12}, {3, 5}, {6, 4}, {5, 7}, {2, 6}, {8, 3}, {7, 9}, {11, 8}, {9, 1}] |
[edit Notes on presentations of 10 28]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 28"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X3,10,4,11 X13,19,14,18 X5,15,6,14 X17,7,18,6 X7,17,8,16 X15,9,16,8 X11,1,12,20 X19,13,20,12 X9,2,10,3 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 10, -2, 1, -4, 5, -6, 7, -10, 2, -8, 9, -3, 4, -7, 6, -5, 3, -9, 8 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 10 14 16 2 20 18 8 6 12 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[31312] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 5, 12, 5 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{12, 2}, {1, 10}, {4, 11}, {10, 12}, {3, 5}, {6, 4}, {5, 7}, {2, 6}, {8, 3}, {7, 9}, {11, 8}, {9, 1}] |
In[14]:=
|
Draw[ap]
|
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4 t^2-13 t+19-13 t^{-1} +4 t^{-2} } |
| Conway polynomial | |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
| Determinant and Signature | { 53, 0 } |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^7+2 q^6-4 q^5+6 q^4-7 q^3+9 q^2-8 q+7-5 q^{-1} +3 q^{-2} - q^{-3} } |
| HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 z^4 a^{-2} +z^4 a^{-4} +z^4-a^2 z^2+4 z^2 a^{-2} +z^2 a^{-4} -z^2 a^{-6} +3 a^{-2} - a^{-6} -1} |
| Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^9 a^{-3} +z^9 a^{-5} +3 z^8 a^{-2} +5 z^8 a^{-4} +2 z^8 a^{-6} +5 z^7 a^{-1} +4 z^7 a^{-3} +z^7 a^{-7} -z^6 a^{-2} -16 z^6 a^{-4} -9 z^6 a^{-6} +6 z^6+5 a z^5-6 z^5 a^{-1} -18 z^5 a^{-3} -12 z^5 a^{-5} -5 z^5 a^{-7} +3 a^2 z^4-12 z^4 a^{-2} +11 z^4 a^{-4} +12 z^4 a^{-6} -8 z^4+a^3 z^3-4 a z^3-2 z^3 a^{-1} +13 z^3 a^{-3} +18 z^3 a^{-5} +8 z^3 a^{-7} -a^2 z^2+10 z^2 a^{-2} -5 z^2 a^{-6} +4 z^2+a z+z a^{-1} -2 z a^{-3} -6 z a^{-5} -4 z a^{-7} -3 a^{-2} + a^{-6} -1} |
| The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{10}+q^8+q^6-2 q^4+q^2-1+2 q^{-4} + q^{-6} +3 q^{-8} + q^{-14} -2 q^{-16} - q^{-22} } |
| The G2 invariant |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^7+2 q^5-2 q^3+2 q- q^{-1} + q^{-3} +2 q^{-5} - q^{-7} +2 q^{-9} -2 q^{-11} + q^{-13} - q^{-15} } |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{20}-2 q^{18}+4 q^{14}-6 q^{12}+q^{10}+6 q^8-9 q^6+3 q^4+8 q^2-8+8 q^{-4} -2 q^{-6} -5 q^{-8} +4 q^{-10} +5 q^{-12} -5 q^{-14} -3 q^{-16} +9 q^{-18} -3 q^{-20} -8 q^{-22} +9 q^{-24} + q^{-26} -10 q^{-28} +5 q^{-30} +4 q^{-32} -7 q^{-34} + q^{-36} +4 q^{-38} -2 q^{-40} - q^{-42} + q^{-44} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{39}+2 q^{37}-2 q^{33}+3 q^{29}+q^{27}-6 q^{25}+2 q^{23}+4 q^{21}-5 q^{19}-5 q^{17}+10 q^{15}+5 q^{13}-16 q^{11}-5 q^9+21 q^7+8 q^5-23 q^3-14 q+23 q^{-1} +19 q^{-3} -12 q^{-5} -23 q^{-7} +2 q^{-9} +25 q^{-11} +14 q^{-13} -21 q^{-15} -21 q^{-17} +14 q^{-19} +29 q^{-21} -7 q^{-23} -32 q^{-25} - q^{-27} +28 q^{-29} +8 q^{-31} -28 q^{-33} -13 q^{-35} +22 q^{-37} +23 q^{-39} -19 q^{-41} -26 q^{-43} +10 q^{-45} +30 q^{-47} -2 q^{-49} -30 q^{-51} -9 q^{-53} +27 q^{-55} +16 q^{-57} -18 q^{-59} -21 q^{-61} +8 q^{-63} +21 q^{-65} -15 q^{-69} -6 q^{-71} +9 q^{-73} +7 q^{-75} -3 q^{-77} -5 q^{-79} +2 q^{-83} + q^{-85} - q^{-87} } |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{64}-2 q^{62}+2 q^{58}-2 q^{56}+3 q^{54}-5 q^{52}+2 q^{50}+4 q^{48}-6 q^{46}+11 q^{44}-8 q^{42}-q^{40}-q^{38}-13 q^{36}+28 q^{34}+2 q^{32}-7 q^{30}-25 q^{28}-28 q^{26}+59 q^{24}+36 q^{22}-13 q^{20}-72 q^{18}-65 q^{16}+86 q^{14}+97 q^{12}+12 q^{10}-110 q^8-126 q^6+64 q^4+136 q^2+81-73 q^{-2} -161 q^{-4} -26 q^{-6} +86 q^{-8} +129 q^{-10} +32 q^{-12} -103 q^{-14} -100 q^{-16} -34 q^{-18} +93 q^{-20} +121 q^{-22} +11 q^{-24} -101 q^{-26} -116 q^{-28} +17 q^{-30} +129 q^{-32} +85 q^{-34} -66 q^{-36} -130 q^{-38} -31 q^{-40} +103 q^{-42} +109 q^{-44} -45 q^{-46} -118 q^{-48} -54 q^{-50} +79 q^{-52} +128 q^{-54} -16 q^{-56} -105 q^{-58} -90 q^{-60} +37 q^{-62} +141 q^{-64} +41 q^{-66} -59 q^{-68} -124 q^{-70} -43 q^{-72} +108 q^{-74} +94 q^{-76} +28 q^{-78} -102 q^{-80} -111 q^{-82} +17 q^{-84} +78 q^{-86} +103 q^{-88} -13 q^{-90} -99 q^{-92} -60 q^{-94} - q^{-96} +92 q^{-98} +57 q^{-100} -21 q^{-102} -55 q^{-104} -58 q^{-106} +23 q^{-108} +48 q^{-110} +29 q^{-112} -4 q^{-114} -43 q^{-116} -16 q^{-118} +6 q^{-120} +20 q^{-122} +17 q^{-124} -9 q^{-126} -9 q^{-128} -7 q^{-130} + q^{-132} +7 q^{-134} + q^{-136} -2 q^{-140} - q^{-142} + q^{-144} } |
| 5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{95}+2 q^{93}-2 q^{89}+2 q^{87}-q^{85}-q^{83}+2 q^{81}-3 q^{77}-q^{73}+6 q^{69}+8 q^{67}-18 q^{63}-17 q^{61}+3 q^{59}+27 q^{57}+42 q^{55}+2 q^{53}-64 q^{51}-72 q^{49}+5 q^{47}+100 q^{45}+122 q^{43}+9 q^{41}-167 q^{39}-205 q^{37}-17 q^{35}+244 q^{33}+303 q^{31}+56 q^{29}-318 q^{27}-446 q^{25}-132 q^{23}+379 q^{21}+595 q^{19}+251 q^{17}-382 q^{15}-720 q^{13}-422 q^{11}+304 q^9+801 q^7+602 q^5-146 q^3-774 q-739 q^{-1} -92 q^{-3} +627 q^{-5} +812 q^{-7} +332 q^{-9} -376 q^{-11} -743 q^{-13} -531 q^{-15} +64 q^{-17} +577 q^{-19} +630 q^{-21} +232 q^{-23} -322 q^{-25} -624 q^{-27} -447 q^{-29} +61 q^{-31} +525 q^{-33} +571 q^{-35} +150 q^{-37} -399 q^{-39} -599 q^{-41} -276 q^{-43} +276 q^{-45} +571 q^{-47} +335 q^{-49} -212 q^{-51} -536 q^{-53} -336 q^{-55} +185 q^{-57} +517 q^{-59} +337 q^{-61} -181 q^{-63} -538 q^{-65} -365 q^{-67} +185 q^{-69} +564 q^{-71} +418 q^{-73} -130 q^{-75} -590 q^{-77} -519 q^{-79} +46 q^{-81} +573 q^{-83} +600 q^{-85} +114 q^{-87} -487 q^{-89} -677 q^{-91} -285 q^{-93} +337 q^{-95} +670 q^{-97} +458 q^{-99} -116 q^{-101} -588 q^{-103} -571 q^{-105} -121 q^{-107} +405 q^{-109} +604 q^{-111} +328 q^{-113} -170 q^{-115} -515 q^{-117} -466 q^{-119} -81 q^{-121} +343 q^{-123} +487 q^{-125} +269 q^{-127} -113 q^{-129} -390 q^{-131} -375 q^{-133} -96 q^{-135} +226 q^{-137} +358 q^{-139} +231 q^{-141} -32 q^{-143} -252 q^{-145} -277 q^{-147} -111 q^{-149} +110 q^{-151} +224 q^{-153} +177 q^{-155} +25 q^{-157} -127 q^{-159} -171 q^{-161} -95 q^{-163} +28 q^{-165} +110 q^{-167} +107 q^{-169} +38 q^{-171} -43 q^{-173} -79 q^{-175} -58 q^{-177} -3 q^{-179} +38 q^{-181} +44 q^{-183} +25 q^{-185} -7 q^{-187} -26 q^{-189} -21 q^{-191} -4 q^{-193} +6 q^{-195} +11 q^{-197} +9 q^{-199} - q^{-201} -5 q^{-203} -3 q^{-205} - q^{-207} +2 q^{-211} + q^{-213} - q^{-215} } |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | |
| 1,1 | |
| 2,0 |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | |
| 1,0,0 |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | |
| 1,0 |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 28"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4 t^2-13 t+19-13 t^{-1} +4 t^{-2} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 53, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^7+2 q^6-4 q^5+6 q^4-7 q^3+9 q^2-8 q+7-5 q^{-1} +3 q^{-2} - q^{-3} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 z^4 a^{-2} +z^4 a^{-4} +z^4-a^2 z^2+4 z^2 a^{-2} +z^2 a^{-4} -z^2 a^{-6} +3 a^{-2} - a^{-6} -1} |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^9 a^{-3} +z^9 a^{-5} +3 z^8 a^{-2} +5 z^8 a^{-4} +2 z^8 a^{-6} +5 z^7 a^{-1} +4 z^7 a^{-3} +z^7 a^{-7} -z^6 a^{-2} -16 z^6 a^{-4} -9 z^6 a^{-6} +6 z^6+5 a z^5-6 z^5 a^{-1} -18 z^5 a^{-3} -12 z^5 a^{-5} -5 z^5 a^{-7} +3 a^2 z^4-12 z^4 a^{-2} +11 z^4 a^{-4} +12 z^4 a^{-6} -8 z^4+a^3 z^3-4 a z^3-2 z^3 a^{-1} +13 z^3 a^{-3} +18 z^3 a^{-5} +8 z^3 a^{-7} -a^2 z^2+10 z^2 a^{-2} -5 z^2 a^{-6} +4 z^2+a z+z a^{-1} -2 z a^{-3} -6 z a^{-5} -4 z a^{-7} -3 a^{-2} + a^{-6} -1} |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {10_37,}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 28"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{10_37,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (3, 4) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 0 is the signature of 10 28. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{21}-2 q^{20}-q^{19}+7 q^{18}-5 q^{17}-9 q^{16}+18 q^{15}-4 q^{14}-24 q^{13}+29 q^{12}+4 q^{11}-41 q^{10}+34 q^9+16 q^8-53 q^7+32 q^6+26 q^5-54 q^4+23 q^3+29 q^2-44 q+15+21 q^{-1} -28 q^{-2} +10 q^{-3} +9 q^{-4} -13 q^{-5} +5 q^{-6} +2 q^{-7} -3 q^{-8} + q^{-9} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{42}+2 q^{41}+q^{40}-2 q^{39}-6 q^{38}+4 q^{37}+11 q^{36}-21 q^{34}-5 q^{33}+26 q^{32}+21 q^{31}-34 q^{30}-34 q^{29}+29 q^{28}+55 q^{27}-23 q^{26}-70 q^{25}+8 q^{24}+83 q^{23}+9 q^{22}-90 q^{21}-28 q^{20}+90 q^{19}+51 q^{18}-91 q^{17}-63 q^{16}+75 q^{15}+87 q^{14}-71 q^{13}-92 q^{12}+44 q^{11}+112 q^{10}-35 q^9-107 q^8+9 q^7+112 q^6-96 q^4-14 q^3+87 q^2+11 q-65-10 q^{-1} +50 q^{-2} +2 q^{-3} -34 q^{-4} +3 q^{-5} +24 q^{-6} -9 q^{-7} -13 q^{-8} +8 q^{-9} +9 q^{-10} -9 q^{-11} -4 q^{-12} +6 q^{-13} + q^{-14} -2 q^{-15} -2 q^{-16} +3 q^{-17} - q^{-18} } |
| 4 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|




