10 41: Difference between revisions
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 16: | Line 16: | ||
{{Knot Presentations}} |
{{Knot Presentations}} |
||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr> |
|||
</table> |
|||
[[Invariants from Braid Theory|Length]] is 10, width is 5. |
|||
[[Invariants from Braid Theory|Braid index]] is 5. |
|||
</td> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
{{3D Invariants}} |
||
{{4D Invariants}} |
{{4D Invariants}} |
||
{{Polynomial Invariants}} |
{{Polynomial Invariants}} |
||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{[[K11n5]], ...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{[[10_94]], ...} |
|||
{{Vassiliev Invariants}} |
{{Vassiliev Invariants}} |
||
Line 42: | Line 74: | ||
<tr align=center><td>-15</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-15</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
</table>}} |
</table>}} |
||
{{Display Coloured Jones|J2=<math>q^{10}-3 q^9+11 q^7-13 q^6-10 q^5+37 q^4-22 q^3-37 q^2+71 q-19-74 q^{-1} +97 q^{-2} -6 q^{-3} -104 q^{-4} +103 q^{-5} +12 q^{-6} -110 q^{-7} +85 q^{-8} +22 q^{-9} -86 q^{-10} +53 q^{-11} +18 q^{-12} -47 q^{-13} +24 q^{-14} +8 q^{-15} -17 q^{-16} +7 q^{-17} +2 q^{-18} -3 q^{-19} + q^{-20} </math>|J3=<math>q^{21}-3 q^{20}+5 q^{18}+6 q^{17}-13 q^{16}-17 q^{15}+20 q^{14}+39 q^{13}-22 q^{12}-71 q^{11}+9 q^{10}+117 q^9+15 q^8-157 q^7-67 q^6+198 q^5+129 q^4-216 q^3-214 q^2+230 q+287-207 q^{-1} -375 q^{-2} +187 q^{-3} +436 q^{-4} -137 q^{-5} -500 q^{-6} +93 q^{-7} +535 q^{-8} -36 q^{-9} -553 q^{-10} -19 q^{-11} +546 q^{-12} +67 q^{-13} -510 q^{-14} -105 q^{-15} +452 q^{-16} +124 q^{-17} -373 q^{-18} -130 q^{-19} +293 q^{-20} +114 q^{-21} -213 q^{-22} -91 q^{-23} +146 q^{-24} +66 q^{-25} -97 q^{-26} -40 q^{-27} +59 q^{-28} +24 q^{-29} -36 q^{-30} -12 q^{-31} +20 q^{-32} +6 q^{-33} -11 q^{-34} - q^{-35} +3 q^{-36} +2 q^{-37} -3 q^{-38} + q^{-39} </math>|J4=<math>q^{36}-3 q^{35}+5 q^{33}+6 q^{31}-20 q^{30}-10 q^{29}+20 q^{28}+15 q^{27}+48 q^{26}-64 q^{25}-73 q^{24}+8 q^{23}+45 q^{22}+206 q^{21}-67 q^{20}-196 q^{19}-141 q^{18}-28 q^{17}+507 q^{16}+119 q^{15}-231 q^{14}-445 q^{13}-398 q^{12}+757 q^{11}+517 q^{10}+69 q^9-692 q^8-1095 q^7+682 q^6+898 q^5+746 q^4-604 q^3-1864 q^2+210 q+981+1579 q^{-1} -122 q^{-2} -2422 q^{-3} -475 q^{-4} +713 q^{-5} +2302 q^{-6} +577 q^{-7} -2665 q^{-8} -1157 q^{-9} +235 q^{-10} +2791 q^{-11} +1288 q^{-12} -2619 q^{-13} -1710 q^{-14} -320 q^{-15} +2980 q^{-16} +1883 q^{-17} -2279 q^{-18} -2026 q^{-19} -874 q^{-20} +2774 q^{-21} +2217 q^{-22} -1656 q^{-23} -1940 q^{-24} -1285 q^{-25} +2135 q^{-26} +2127 q^{-27} -916 q^{-28} -1432 q^{-29} -1359 q^{-30} +1293 q^{-31} +1608 q^{-32} -361 q^{-33} -749 q^{-34} -1057 q^{-35} +600 q^{-36} +929 q^{-37} -119 q^{-38} -235 q^{-39} -609 q^{-40} +230 q^{-41} +409 q^{-42} -74 q^{-43} -12 q^{-44} -266 q^{-45} +91 q^{-46} +144 q^{-47} -63 q^{-48} +27 q^{-49} -92 q^{-50} +41 q^{-51} +44 q^{-52} -37 q^{-53} +16 q^{-54} -26 q^{-55} +14 q^{-56} +12 q^{-57} -13 q^{-58} +5 q^{-59} -5 q^{-60} +3 q^{-61} +2 q^{-62} -3 q^{-63} + q^{-64} </math>|J5=<math>q^{55}-3 q^{54}+5 q^{52}-q^{49}-13 q^{48}-10 q^{47}+20 q^{46}+24 q^{45}+15 q^{44}-3 q^{43}-57 q^{42}-73 q^{41}-3 q^{40}+98 q^{39}+136 q^{38}+81 q^{37}-98 q^{36}-274 q^{35}-231 q^{34}+48 q^{33}+388 q^{32}+488 q^{31}+156 q^{30}-440 q^{29}-822 q^{28}-557 q^{27}+309 q^{26}+1162 q^{25}+1143 q^{24}+98 q^{23}-1294 q^{22}-1893 q^{21}-890 q^{20}+1169 q^{19}+2580 q^{18}+1963 q^{17}-495 q^{16}-3034 q^{15}-3320 q^{14}-616 q^{13}+3036 q^{12}+4575 q^{11}+2290 q^{10}-2444 q^9-5669 q^8-4183 q^7+1215 q^6+6215 q^5+6272 q^4+563 q^3-6309 q^2-8086 q-2747+5675 q^{-1} +9762 q^{-2} +5110 q^{-3} -4708 q^{-4} -10866 q^{-5} -7467 q^{-6} +3196 q^{-7} +11732 q^{-8} +9709 q^{-9} -1663 q^{-10} -12094 q^{-11} -11696 q^{-12} -108 q^{-13} +12281 q^{-14} +13474 q^{-15} +1751 q^{-16} -12163 q^{-17} -14968 q^{-18} -3440 q^{-19} +11872 q^{-20} +16226 q^{-21} +5044 q^{-22} -11311 q^{-23} -17182 q^{-24} -6620 q^{-25} +10462 q^{-26} +17727 q^{-27} +8139 q^{-28} -9242 q^{-29} -17800 q^{-30} -9471 q^{-31} +7641 q^{-32} +17257 q^{-33} +10522 q^{-34} -5751 q^{-35} -16046 q^{-36} -11104 q^{-37} +3685 q^{-38} +14226 q^{-39} +11134 q^{-40} -1751 q^{-41} -11907 q^{-42} -10492 q^{-43} +49 q^{-44} +9366 q^{-45} +9335 q^{-46} +1143 q^{-47} -6881 q^{-48} -7734 q^{-49} -1824 q^{-50} +4654 q^{-51} +6007 q^{-52} +2020 q^{-53} -2896 q^{-54} -4354 q^{-55} -1827 q^{-56} +1630 q^{-57} +2906 q^{-58} +1475 q^{-59} -813 q^{-60} -1829 q^{-61} -1041 q^{-62} +366 q^{-63} +1045 q^{-64} +667 q^{-65} -136 q^{-66} -563 q^{-67} -378 q^{-68} +44 q^{-69} +279 q^{-70} +195 q^{-71} -23 q^{-72} -131 q^{-73} -73 q^{-74} +8 q^{-75} +49 q^{-76} +40 q^{-77} -15 q^{-78} -33 q^{-79} +5 q^{-80} +11 q^{-81} -4 q^{-82} +11 q^{-83} -5 q^{-84} -15 q^{-85} +10 q^{-86} +6 q^{-87} -7 q^{-88} +3 q^{-89} + q^{-90} -5 q^{-91} +3 q^{-92} +2 q^{-93} -3 q^{-94} + q^{-95} </math>|J6=<math>q^{78}-3 q^{77}+5 q^{75}-7 q^{72}+6 q^{71}-13 q^{70}-10 q^{69}+29 q^{68}+15 q^{67}+15 q^{66}-27 q^{65}+4 q^{64}-68 q^{63}-73 q^{62}+62 q^{61}+89 q^{60}+135 q^{59}+9 q^{58}+63 q^{57}-242 q^{56}-367 q^{55}-95 q^{54}+110 q^{53}+456 q^{52}+367 q^{51}+601 q^{50}-255 q^{49}-953 q^{48}-932 q^{47}-608 q^{46}+398 q^{45}+974 q^{44}+2312 q^{43}+1026 q^{42}-733 q^{41}-2167 q^{40}-2865 q^{39}-1764 q^{38}-12 q^{37}+4402 q^{36}+4486 q^{35}+2707 q^{34}-1036 q^{33}-5025 q^{32}-6815 q^{31}-5672 q^{30}+2853 q^{29}+7427 q^{28}+9801 q^{27}+6133 q^{26}-1711 q^{25}-10728 q^{24}-15749 q^{23}-6530 q^{22}+3169 q^{21}+14993 q^{20}+18223 q^{19}+11488 q^{18}-5657 q^{17}-23111 q^{16}-21653 q^{15}-12620 q^{14}+9494 q^{13}+26828 q^{12}+31357 q^{11}+12391 q^{10}-18421 q^9-33135 q^8-35689 q^7-10156 q^6+22642 q^5+47836 q^4+38313 q^3+1043 q^2-32044 q-55786-38220 q^{-1} +3894 q^{-2} +52563 q^{-3} +62043 q^{-4} +29106 q^{-5} -17439 q^{-6} -65382 q^{-7} -65037 q^{-8} -22978 q^{-9} +45146 q^{-10} +76917 q^{-11} +56713 q^{-12} +4383 q^{-13} -64503 q^{-14} -84666 q^{-15} -49669 q^{-16} +31243 q^{-17} +83078 q^{-18} +78682 q^{-19} +26256 q^{-20} -57964 q^{-21} -97096 q^{-22} -71826 q^{-23} +16414 q^{-24} +84162 q^{-25} +94960 q^{-26} +45142 q^{-27} -49560 q^{-28} -104730 q^{-29} -89622 q^{-30} +1943 q^{-31} +82006 q^{-32} +107014 q^{-33} +62045 q^{-34} -38712 q^{-35} -107583 q^{-36} -104025 q^{-37} -14318 q^{-38} +74179 q^{-39} +113419 q^{-40} +77868 q^{-41} -22271 q^{-42} -101680 q^{-43} -112526 q^{-44} -33077 q^{-45} +56857 q^{-46} +109001 q^{-47} +89073 q^{-48} -124 q^{-49} -82953 q^{-50} -109059 q^{-51} -49394 q^{-52} +30992 q^{-53} +89805 q^{-54} +88627 q^{-55} +21109 q^{-56} -53732 q^{-57} -90038 q^{-58} -55055 q^{-59} +4988 q^{-60} +59611 q^{-61} +73183 q^{-62} +32174 q^{-63} -24051 q^{-64} -60527 q^{-65} -46714 q^{-66} -11158 q^{-67} +29527 q^{-68} +48458 q^{-69} +29880 q^{-70} -4180 q^{-71} -31958 q^{-72} -30078 q^{-73} -14530 q^{-74} +9323 q^{-75} +25188 q^{-76} +19731 q^{-77} +3455 q^{-78} -12899 q^{-79} -14492 q^{-80} -10274 q^{-81} +543 q^{-82} +10205 q^{-83} +9688 q^{-84} +3611 q^{-85} -3947 q^{-86} -5031 q^{-87} -5025 q^{-88} -1321 q^{-89} +3269 q^{-90} +3610 q^{-91} +1822 q^{-92} -997 q^{-93} -1077 q^{-94} -1814 q^{-95} -920 q^{-96} +891 q^{-97} +1025 q^{-98} +595 q^{-99} -302 q^{-100} +10 q^{-101} -487 q^{-102} -392 q^{-103} +249 q^{-104} +219 q^{-105} +123 q^{-106} -142 q^{-107} +128 q^{-108} -92 q^{-109} -132 q^{-110} +83 q^{-111} +36 q^{-112} +12 q^{-113} -70 q^{-114} +67 q^{-115} -10 q^{-116} -40 q^{-117} +29 q^{-118} +3 q^{-119} +2 q^{-120} -26 q^{-121} +21 q^{-122} +2 q^{-123} -13 q^{-124} +9 q^{-125} - q^{-126} + q^{-127} -5 q^{-128} +3 q^{-129} +2 q^{-130} -3 q^{-131} + q^{-132} </math>|J7=<math>q^{105}-3 q^{104}+5 q^{102}-7 q^{99}+6 q^{97}-13 q^{96}-q^{95}+20 q^{94}+15 q^{93}+15 q^{92}-27 q^{91}-31 q^{90}+4 q^{89}-57 q^{88}-19 q^{87}+53 q^{86}+89 q^{85}+148 q^{84}+8 q^{83}-88 q^{82}-83 q^{81}-269 q^{80}-229 q^{79}-34 q^{78}+170 q^{77}+605 q^{76}+500 q^{75}+218 q^{74}+6 q^{73}-756 q^{72}-1064 q^{71}-1000 q^{70}-557 q^{69}+908 q^{68}+1732 q^{67}+1973 q^{66}+1827 q^{65}-112 q^{64}-1965 q^{63}-3479 q^{62}-4216 q^{61}-1785 q^{60}+1249 q^{59}+4471 q^{58}+7157 q^{57}+5569 q^{56}+1829 q^{55}-3848 q^{54}-10138 q^{53}-10979 q^{52}-7761 q^{51}-50 q^{50}+10960 q^{49}+16620 q^{48}+16829 q^{47}+8893 q^{46}-7103 q^{45}-20157 q^{44}-27579 q^{43}-22959 q^{42}-3654 q^{41}+17772 q^{40}+36288 q^{39}+40873 q^{38}+23044 q^{37}-5655 q^{36}-38811 q^{35}-58918 q^{34}-49299 q^{33}-18218 q^{32}+29217 q^{31}+70628 q^{30}+79120 q^{29}+54279 q^{28}-4146 q^{27}-70199 q^{26}-105251 q^{25}-98015 q^{24}-37985 q^{23}+50949 q^{22}+120100 q^{21}+143664 q^{20}+94365 q^{19}-10861 q^{18}-116323 q^{17}-181668 q^{16}-158894 q^{15}-49939 q^{14}+89082 q^{13}+204314 q^{12}+223127 q^{11}+125841 q^{10}-37376 q^9-204535 q^8-278016 q^7-209941 q^6-35602 q^5+180193 q^4+315818 q^3+292537 q^2+123886 q-131266-332406 q^{-1} -366700 q^{-2} -219039 q^{-3} +63541 q^{-4} +326287 q^{-5} +425090 q^{-6} +313588 q^{-7} +18020 q^{-8} -300224 q^{-9} -466762 q^{-10} -400552 q^{-11} -104271 q^{-12} +258719 q^{-13} +489935 q^{-14} +475838 q^{-15} +190604 q^{-16} -207640 q^{-17} -499106 q^{-18} -537948 q^{-19} -270228 q^{-20} +153051 q^{-21} +496546 q^{-22} +586987 q^{-23} +341870 q^{-24} -99047 q^{-25} -487955 q^{-26} -625688 q^{-27} -403628 q^{-28} +49238 q^{-29} +476008 q^{-30} +656253 q^{-31} +457319 q^{-32} -3979 q^{-33} -463670 q^{-34} -681906 q^{-35} -504643 q^{-36} -37239 q^{-37} +451185 q^{-38} +704227 q^{-39} +548224 q^{-40} +76868 q^{-41} -437224 q^{-42} -723423 q^{-43} -590117 q^{-44} -118240 q^{-45} +418986 q^{-46} +738229 q^{-47} +630766 q^{-48} +163718 q^{-49} -392270 q^{-50} -744700 q^{-51} -669088 q^{-52} -215267 q^{-53} +353345 q^{-54} +738647 q^{-55} +701339 q^{-56} +271792 q^{-57} -299629 q^{-58} -714860 q^{-59} -722203 q^{-60} -329990 q^{-61} +231138 q^{-62} +669613 q^{-63} +725758 q^{-64} +384010 q^{-65} -151130 q^{-66} -602189 q^{-67} -706850 q^{-68} -426152 q^{-69} +66032 q^{-70} +514775 q^{-71} +662652 q^{-72} +450056 q^{-73} +15962 q^{-74} -414116 q^{-75} -594816 q^{-76} -450571 q^{-77} -85577 q^{-78} +308775 q^{-79} +507937 q^{-80} +426833 q^{-81} +136688 q^{-82} -208698 q^{-83} -411023 q^{-84} -382051 q^{-85} -165017 q^{-86} +122682 q^{-87} +313046 q^{-88} +322316 q^{-89} +171536 q^{-90} -55721 q^{-91} -223315 q^{-92} -256327 q^{-93} -160059 q^{-94} +10073 q^{-95} +148231 q^{-96} +191585 q^{-97} +136538 q^{-98} +16367 q^{-99} -90360 q^{-100} -134545 q^{-101} -108038 q^{-102} -27646 q^{-103} +50119 q^{-104} +88736 q^{-105} +79332 q^{-106} +28709 q^{-107} -24306 q^{-108} -54708 q^{-109} -54676 q^{-110} -24540 q^{-111} +9734 q^{-112} +31648 q^{-113} +35373 q^{-114} +18291 q^{-115} -2489 q^{-116} -17000 q^{-117} -21548 q^{-118} -12382 q^{-119} -548 q^{-120} +8471 q^{-121} +12522 q^{-122} +7721 q^{-123} +1268 q^{-124} -3923 q^{-125} -6875 q^{-126} -4360 q^{-127} -1171 q^{-128} +1531 q^{-129} +3622 q^{-130} +2379 q^{-131} +852 q^{-132} -574 q^{-133} -1911 q^{-134} -1089 q^{-135} -426 q^{-136} +73 q^{-137} +862 q^{-138} +505 q^{-139} +325 q^{-140} +31 q^{-141} -530 q^{-142} -169 q^{-143} -48 q^{-144} -66 q^{-145} +162 q^{-146} +27 q^{-147} +107 q^{-148} +71 q^{-149} -168 q^{-150} -3 q^{-151} +32 q^{-152} -28 q^{-153} +24 q^{-154} -36 q^{-155} +34 q^{-156} +38 q^{-157} -58 q^{-158} +8 q^{-159} +18 q^{-160} -5 q^{-161} +4 q^{-162} -19 q^{-163} +10 q^{-164} +13 q^{-165} -17 q^{-166} +3 q^{-167} +5 q^{-168} - q^{-169} + q^{-170} -5 q^{-171} +3 q^{-172} +2 q^{-173} -3 q^{-174} + q^{-175} </math>}} |
|||
{{Computer Talk Header}} |
{{Computer Talk Header}} |
||
Line 49: | Line 84: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[10, 41]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 41]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[5, 12, 6, 13], X[3, 11, 4, 10], X[11, 3, 12, 2], |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[5, 12, 6, 13], X[3, 11, 4, 10], X[11, 3, 12, 2], |
|||
X[9, 20, 10, 1], X[15, 19, 16, 18], X[13, 8, 14, 9], X[17, 6, 18, 7], |
X[9, 20, 10, 1], X[15, 19, 16, 18], X[13, 8, 14, 9], X[17, 6, 18, 7], |
||
X[7, 16, 8, 17], X[19, 15, 20, 14]]</nowiki></pre></td></tr> |
X[7, 16, 8, 17], X[19, 15, 20, 14]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 41]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 41]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 4, -3, 1, -2, 8, -9, 7, -5, 3, -4, 2, -7, 10, -6, 9, -8, |
|||
6, -10, 5]</nowiki></pre></td></tr> |
6, -10, 5]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[10, 41]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 41]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 10, 12, 16, 20, 2, 8, 18, 6, 14]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 41]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {1, -2, 1, -2, -2, 3, -2, -4, 3, -4}]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {1, -2, 1, -2, -2, 3, -2, -4, 3, -4}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 41]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{5, 10}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 41]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 41]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_41_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 41]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 3, 2, NotAvailable, 1}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 41]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 7 17 2 3 |
|||
-21 + t - -- + -- + 17 t - 7 t + t |
-21 + t - -- + -- + 17 t - 7 t + t |
||
2 t |
2 t |
||
t</nowiki></pre></td></tr> |
t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 41]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 41]][z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
|||
1 - 2 z - z + z</nowiki></pre></td></tr> |
1 - 2 z - z + z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 41], Knot[11, NonAlternating, 5]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{71, -2}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 41]], KnotSignature[Knot[10, 41]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{71, -2}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 41]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -7 3 6 9 11 12 11 2 3 |
|||
-8 + q - -- + -- - -- + -- - -- + -- + 6 q - 3 q + q |
-8 + q - -- + -- - -- + -- - -- + -- + 6 q - 3 q + q |
||
6 5 4 3 2 q |
6 5 4 3 2 q |
||
q q q q q</nowiki></pre></td></tr> |
q q q q q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 41], Knot[10, 94]}</nowiki></pre></td></tr> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 41]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 41]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -22 -18 2 2 -10 2 2 2 2 2 4 |
|||
1 + q - q + --- - --- + q - -- + -- - -- + -- - q + 2 q - |
1 + q - q + --- - --- + q - -- + -- - -- + -- - q + 2 q - |
||
16 14 8 6 4 2 |
16 14 8 6 4 2 |
||
Line 92: | Line 148: | ||
6 10 |
6 10 |
||
q + q</nowiki></pre></td></tr> |
q + q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 41]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 41]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 |
|||
-2 2 4 6 2 z 2 2 4 2 6 2 |
|||
-1 + a + 2 a - 2 a + a - 4 z + -- + 4 a z - 4 a z + a z - |
|||
2 |
|||
a |
|||
4 2 4 4 4 2 6 |
|||
2 z + 3 a z - 2 a z + a z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 41]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 |
|||
-2 2 4 6 z 3 7 2 3 z |
-2 2 4 6 z 3 7 2 3 z |
||
-1 - a - 2 a - 2 a - a - - - 2 a z - 2 a z + a z + 7 z + ---- + |
-1 - a - 2 a - 2 a - a - - - 2 a z - 2 a z + a z + 7 z + ---- + |
||
Line 123: | Line 190: | ||
8 2 8 4 8 9 3 9 |
8 2 8 4 8 9 3 9 |
||
3 z + 6 a z + 3 a z + a z + a z</nowiki></pre></td></tr> |
3 z + 6 a z + 3 a z + a z + a z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 41]], Vassiliev[3][Knot[10, 41]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 41]], Vassiliev[3][Knot[10, 41]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{-2, 2}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5 7 1 2 1 4 2 5 4 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 41]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5 7 1 2 1 4 2 5 4 |
|||
-- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- + |
-- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- + |
||
3 q 15 6 13 5 11 5 11 4 9 4 9 3 7 3 |
3 q 15 6 13 5 11 5 11 4 9 4 9 3 7 3 |
||
Line 138: | Line 207: | ||
3 3 5 3 7 4 |
3 3 5 3 7 4 |
||
q t + 2 q t + q t</nowiki></pre></td></tr> |
q t + 2 q t + q t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 41], 2][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -20 3 2 7 17 8 24 47 18 53 |
|||
-19 + q - --- + --- + --- - --- + --- + --- - --- + --- + --- - |
|||
19 18 17 16 15 14 13 12 11 |
|||
q q q q q q q q q |
|||
86 22 85 110 12 103 104 6 97 74 2 |
|||
--- + -- + -- - --- + -- + --- - --- - -- + -- - -- + 71 q - 37 q - |
|||
10 9 8 7 6 5 4 3 2 q |
|||
q q q q q q q q q |
|||
3 4 5 6 7 9 10 |
|||
22 q + 37 q - 10 q - 13 q + 11 q - 3 q + q</nowiki></pre></td></tr> |
|||
</table> |
</table> |
||
See/edit the [[Rolfsen_Splice_Template]]. |
|||
[[Category:Knot Page]] |
[[Category:Knot Page]] |
Revision as of 17:16, 29 August 2005
|
|
Visit 10 41's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 41's page at Knotilus! Visit 10 41's page at the original Knot Atlas! |
Knot presentations
Planar diagram presentation | X1425 X5,12,6,13 X3,11,4,10 X11,3,12,2 X9,20,10,1 X15,19,16,18 X13,8,14,9 X17,6,18,7 X7,16,8,17 X19,15,20,14 |
Gauss code | -1, 4, -3, 1, -2, 8, -9, 7, -5, 3, -4, 2, -7, 10, -6, 9, -8, 6, -10, 5 |
Dowker-Thistlethwaite code | 4 10 12 16 20 2 8 18 6 14 |
Conway Notation | [221212] |
Length is 10, width is 5. Braid index is 5. |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 41"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 71, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11n5, ...}
Same Jones Polynomial (up to mirroring, ): {10_94, ...}
Vassiliev invariants
V2 and V3: | (-2, 2) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 10 41. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
See/edit the Rolfsen_Splice_Template.