In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[10, 92]] |
Out[2]= | PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[14, 6, 15, 5], X[20, 16, 1, 15],
X[16, 12, 17, 11], X[18, 7, 19, 8], X[12, 18, 13, 17],
X[6, 19, 7, 20], X[8, 14, 9, 13], X[2, 10, 3, 9]] |
In[3]:= | GaussCode[Knot[10, 92]] |
Out[3]= | GaussCode[1, -10, 2, -1, 3, -8, 6, -9, 10, -2, 5, -7, 9, -3, 4, -5, 7,
-6, 8, -4] |
In[4]:= | DTCode[Knot[10, 92]] |
Out[4]= | DTCode[4, 10, 14, 18, 2, 16, 8, 20, 12, 6] |
In[5]:= | br = BR[Knot[10, 92]] |
Out[5]= | BR[4, {1, 1, 1, 2, 2, -3, 2, -1, 2, -3, 2}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 92]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 92]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[10, 92]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Chiral, 2, 3, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 92]][t] |
Out[10]= | 2 10 20 2 3
25 - -- + -- - -- - 20 t + 10 t - 2 t
3 2 t
t t |
In[11]:= | Conway[Knot[10, 92]][z] |
Out[11]= | 2 4 6
1 + 2 z - 2 z - 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 92], Knot[11, Alternating, 153], Knot[11, Alternating, 224],
Knot[11, NonAlternating, 35], Knot[11, NonAlternating, 43]} |
In[13]:= | {KnotDet[Knot[10, 92]], KnotSignature[Knot[10, 92]]} |
Out[13]= | {89, 4} |
In[14]:= | Jones[Knot[10, 92]][q] |
Out[14]= | 2 3 4 5 6 7 8 9
1 - 3 q + 7 q - 10 q + 14 q - 15 q + 14 q - 12 q + 8 q - 4 q +
10
q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 92]} |
In[16]:= | A2Invariant[Knot[10, 92]][q] |
Out[16]= | 2 4 6 8 10 12 14 16 18 20
1 - q + q + 2 q - 2 q + 4 q - q + q + q - 3 q + 2 q -
22 24 26 28 30
3 q + q + q - 2 q + q |
In[17]:= | HOMFLYPT[Knot[10, 92]][a, z] |
Out[17]= | 2 2 2 4 4 4 4 6 6
-6 -4 -2 z z 2 z z 2 z 2 z z z z
-a + a + a + -- - -- + ---- + -- - ---- - ---- + -- - -- - --
8 6 2 8 6 4 2 6 4
a a a a a a a a a |
In[18]:= | Kauffman[Knot[10, 92]][a, z] |
Out[18]= | 2 2 2 2
-6 -4 -2 z 5 z 5 z z 2 z 2 z 2 z z
a + a - a - -- - --- - --- - -- + ---- + ---- - ---- + -- +
9 7 5 3 10 8 6 4
a a a a a a a a
2 3 3 3 3 3 4 4 4
3 z 2 z 7 z 21 z 18 z 6 z z 8 z 4 z
---- - ---- + ---- + ----- + ----- + ---- + --- - ---- - ---- +
2 11 9 7 5 3 12 10 8
a a a a a a a a a
4 4 4 5 5 5 5 5 6
10 z 2 z 3 z 4 z 14 z 32 z 22 z 8 z 8 z
----- + ---- - ---- + ---- - ----- - ----- - ----- - ---- + ---- -
6 4 2 11 9 7 5 3 10
a a a a a a a a a
6 6 6 6 7 7 7 7 8
5 z 22 z 8 z z 10 z 12 z 5 z 3 z 7 z
---- - ----- - ---- + -- + ----- + ----- + ---- + ---- + ---- +
8 6 4 2 9 7 5 3 8
a a a a a a a a a
8 8 9 9
11 z 4 z 2 z 2 z
----- + ---- + ---- + ----
6 4 7 5
a a a a |
In[19]:= | {Vassiliev[2][Knot[10, 92]], Vassiliev[3][Knot[10, 92]]} |
Out[19]= | {2, 3} |
In[20]:= | Kh[Knot[10, 92]][q, t] |
Out[20]= | 3
3 5 1 2 q q 5 7 7 2 9 2
5 q + 3 q + ---- + --- + -- + 6 q t + 4 q t + 8 q t + 6 q t +
2 t t
q t
9 3 11 3 11 4 13 4 13 5 15 5
7 q t + 8 q t + 7 q t + 7 q t + 5 q t + 7 q t +
15 6 17 6 17 7 19 7 21 8
3 q t + 5 q t + q t + 3 q t + q t |
In[21]:= | ColouredJones[Knot[10, 92], 2][q] |
Out[21]= | -2 3 2 3 4 5 6 7
1 + q - - + 11 q - 18 q - 6 q + 48 q - 41 q - 41 q + 109 q -
q
8 9 10 11 12 13 14
47 q - 103 q + 161 q - 28 q - 159 q + 176 q + 5 q -
15 16 17 18 19 20 21
178 q + 148 q + 32 q - 147 q + 90 q + 36 q - 83 q +
22 23 24 25 26 27 28
35 q + 20 q - 27 q + 8 q + 4 q - 4 q + q |