In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[10, 98]] |
Out[2]= | PD[X[1, 6, 2, 7], X[3, 10, 4, 11], X[7, 18, 8, 19], X[17, 8, 18, 9],
X[9, 2, 10, 3], X[11, 16, 12, 17], X[5, 15, 6, 14], X[15, 5, 16, 4],
X[13, 20, 14, 1], X[19, 12, 20, 13]] |
In[3]:= | GaussCode[Knot[10, 98]] |
Out[3]= | GaussCode[-1, 5, -2, 8, -7, 1, -3, 4, -5, 2, -6, 10, -9, 7, -8, 6, -4,
3, -10, 9] |
In[4]:= | DTCode[Knot[10, 98]] |
Out[4]= | DTCode[6, 10, 14, 18, 2, 16, 20, 4, 8, 12] |
In[5]:= | br = BR[Knot[10, 98]] |
Out[5]= | BR[4, {-1, -1, -2, -2, 3, -2, 1, -2, -2, 3, -2}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 98]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 98]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[10, 98]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Chiral, 2, 3, 3, NotAvailable, 2} |
In[10]:= | alex = Alexander[Knot[10, 98]][t] |
Out[10]= | 2 9 18 2 3
23 - -- + -- - -- - 18 t + 9 t - 2 t
3 2 t
t t |
In[11]:= | Conway[Knot[10, 98]][z] |
Out[11]= | 4 6
1 - 3 z - 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 87], Knot[10, 98], Knot[11, Alternating, 58],
Knot[11, Alternating, 165], Knot[11, NonAlternating, 72]} |
In[13]:= | {KnotDet[Knot[10, 98]], KnotSignature[Knot[10, 98]]} |
Out[13]= | {81, -4} |
In[14]:= | Jones[Knot[10, 98]][q] |
Out[14]= | -10 3 7 11 12 14 13 9 7 3
1 + q - -- + -- - -- + -- - -- + -- - -- + -- - -
9 8 7 6 5 4 3 2 q
q q q q q q q q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 98]} |
In[16]:= | A2Invariant[Knot[10, 98]][q] |
Out[16]= | -30 -28 2 2 3 5 -16 -14 5 -8
1 + q - q + --- + --- - --- - --- - q + q + --- - q +
26 24 22 18 10
q q q q q
2 -4 -2
-- + q - q
6
q |
In[17]:= | HOMFLYPT[Knot[10, 98]][a, z] |
Out[17]= | 2 4 6 8 2 2 4 2 6 2 8 2 2 4
a + 3 a - 5 a + 2 a + 2 a z + a z - 5 a z + 2 a z + a z -
4 4 6 4 8 4 4 6 6 6
2 a z - 3 a z + a z - a z - a z |
In[18]:= | Kauffman[Knot[10, 98]][a, z] |
Out[18]= | 2 4 6 8 5 7 9 2 2
-a + 3 a + 5 a + 2 a - 6 a z - 12 a z - 6 a z + 3 a z -
4 2 6 2 10 2 12 2 3 3 5 3
2 a z - 10 a z + 4 a z - a z + 5 a z + 14 a z +
7 3 9 3 11 3 2 4 4 4 6 4
25 a z + 14 a z - 2 a z - 3 a z + 4 a z + 17 a z +
8 4 10 4 12 4 3 5 5 5 7 5
2 a z - 7 a z + a z - 8 a z - 17 a z - 26 a z -
9 5 11 5 2 6 4 6 6 6 8 6
14 a z + 3 a z + a z - 9 a z - 23 a z - 7 a z +
10 6 3 7 5 7 7 7 9 7 4 8
6 a z + 3 a z + 3 a z + 8 a z + 8 a z + 4 a z +
6 8 8 8 5 9 7 9
10 a z + 6 a z + 2 a z + 2 a z |
In[19]:= | {Vassiliev[2][Knot[10, 98]], Vassiliev[3][Knot[10, 98]]} |
Out[19]= | {0, 3} |
In[20]:= | Kh[Knot[10, 98]][q, t] |
Out[20]= | 3 5 1 2 1 5 2 6
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ +
5 3 21 8 19 7 17 7 17 6 15 6 15 5
q q q t q t q t q t q t q t
5 6 6 8 6 5 8 4
------ + ------ + ------ + ------ + ----- + ----- + ----- + ---- +
13 5 13 4 11 4 11 3 9 3 9 2 7 2 7
q t q t q t q t q t q t q t q t
5 t 2 t 2
---- + -- + --- + q t
5 3 q
q t q |
In[21]:= | ColouredJones[Knot[10, 98], 2][q] |
Out[21]= | -28 3 3 5 19 16 22 62 33 63 116
1 + q - --- + --- + --- - --- + --- + --- - --- + --- + --- - --- +
27 26 25 24 23 22 21 20 19 18
q q q q q q q q q q
37 110 147 17 136 137 13 130 93 33 94 40
--- + --- - --- + --- + --- - --- - --- + --- - -- - -- + -- - -- -
17 16 15 14 13 12 11 10 9 8 7 6
q q q q q q q q q q q q
34 45 7 17 11 2
-- + -- - -- - -- + -- - 3 q + q
5 4 3 2 q
q q q q |