In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[10, 10]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 12, 4, 13], X[13, 1, 14, 20], X[5, 15, 6, 14],
X[19, 7, 20, 6], X[7, 19, 8, 18], X[9, 17, 10, 16],
X[15, 11, 16, 10], X[17, 9, 18, 8], X[11, 2, 12, 3]] |
In[3]:= | GaussCode[Knot[10, 10]] |
Out[3]= | GaussCode[-1, 10, -2, 1, -4, 5, -6, 9, -7, 8, -10, 2, -3, 4, -8, 7, -9,
6, -5, 3] |
In[4]:= | DTCode[Knot[10, 10]] |
Out[4]= | DTCode[4, 12, 14, 18, 16, 2, 20, 10, 8, 6] |
In[5]:= | br = BR[Knot[10, 10]] |
Out[5]= | BR[5, {-1, -1, 2, -1, 2, 2, 3, -2, 3, 4, -3, 4}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {5, 12} |
In[7]:= | BraidIndex[Knot[10, 10]] |
Out[7]= | 5 |
In[8]:= | Show[DrawMorseLink[Knot[10, 10]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[10, 10]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, 1, 2, 2, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 10]][t] |
Out[10]= | 3 11 2
17 + -- - -- - 11 t + 3 t
2 t
t |
In[11]:= | Conway[Knot[10, 10]][z] |
Out[11]= | 2 4
1 + z + 3 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 10], Knot[10, 164]} |
In[13]:= | {KnotDet[Knot[10, 10]], KnotSignature[Knot[10, 10]]} |
Out[13]= | {45, 0} |
In[14]:= | Jones[Knot[10, 10]][q] |
Out[14]= | -3 3 4 2 3 4 5 6 7
6 - q + -- - - - 7 q + 7 q - 6 q + 5 q - 3 q + 2 q - q
2 q
q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 10]} |
In[16]:= | A2Invariant[Knot[10, 10]][q] |
Out[16]= | -10 -8 -6 -4 2 6 8 12 14 16 22
-q + q + q - q + -- - q + q + q + 2 q - q - q
2
q |
In[17]:= | HOMFLYPT[Knot[10, 10]][a, z] |
Out[17]= | 2 2 4 4
-6 2 -2 2 z 2 z 2 2 4 z z
1 - a + -- - a + z - -- + ---- - a z + z + -- + --
4 6 4 4 2
a a a a a |
In[18]:= | Kauffman[Knot[10, 10]][a, z] |
Out[18]= | 2 2 2
-6 2 -2 3 z 6 z 4 z z 2 8 z 12 z 4 z
1 + a + -- + a - --- - --- - --- - - - 2 z - ---- - ----- - ---- -
4 7 5 3 a 6 4 2
a a a a a a a
3 3 3 3
2 2 7 z 17 z 17 z 3 z 3 3 3 4
2 a z + ---- + ----- + ----- + ---- - 3 a z + a z - 3 z +
7 5 3 a
a a a
4 4 4 5 5 5 5
15 z 26 z 5 z 2 4 5 z 10 z 16 z 7 z
----- + ----- + ---- + 3 a z - ---- - ----- - ----- - ---- +
6 4 2 7 5 3 a
a a a a a a
6 6 6 7 7 7 7 8
5 6 10 z 21 z 7 z z z 2 z 4 z 2 z
4 a z + 4 z - ----- - ----- - ---- + -- - -- + ---- + ---- + ---- +
6 4 2 7 5 3 a 6
a a a a a a a
8 8 9 9
5 z 3 z z z
---- + ---- + -- + --
4 2 5 3
a a a a |
In[19]:= | {Vassiliev[2][Knot[10, 10]], Vassiliev[3][Knot[10, 10]]} |
Out[19]= | {1, 2} |
In[20]:= | Kh[Knot[10, 10]][q, t] |
Out[20]= | 4 1 2 1 2 2 3
- + 3 q + ----- + ----- + ----- + ---- + --- + 4 q t + 3 q t +
q 7 3 5 2 3 2 3 q t
q t q t q t q t
3 2 5 2 5 3 7 3 7 4 9 4 9 5
3 q t + 4 q t + 3 q t + 3 q t + 2 q t + 3 q t + q t +
11 5 11 6 13 6 15 7
2 q t + q t + q t + q t |
In[21]:= | ColouredJones[Knot[10, 10], 2][q] |
Out[21]= | -9 3 -7 6 10 4 10 19 10 2
14 + q - -- + q + -- - -- + -- + -- - -- + -- - 28 q + 14 q +
8 6 5 4 3 2 q
q q q q q q
3 4 5 6 7 8 9 10 11
19 q - 34 q + 12 q + 24 q - 33 q + 6 q + 25 q - 26 q - q +
12 13 14 15 16 17 18 19
22 q - 16 q - 5 q + 15 q - 6 q - 5 q + 6 q - q -
20 21
2 q + q |