10 9

From Knot Atlas
Jump to navigationJump to search

10 8.gif

10_8

10 10.gif

10_10

10 9.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 10 9's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10 9 at Knotilus!


Knot presentations

Planar diagram presentation X6271 X16,8,17,7 X12,3,13,4 X2,15,3,16 X14,5,15,6 X4,13,5,14 X18,10,19,9 X20,12,1,11 X8,18,9,17 X10,20,11,19
Gauss code 1, -4, 3, -6, 5, -1, 2, -9, 7, -10, 8, -3, 6, -5, 4, -2, 9, -7, 10, -8
Dowker-Thistlethwaite code 6 12 14 16 18 20 4 2 8 10
Conway Notation [5113]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart4.gif

Length is 10, width is 3,

Braid index is 3

10 9 ML.gif 10 9 AP.gif
[{2, 12}, {1, 7}, {11, 6}, {12, 8}, {7, 5}, {6, 4}, {5, 3}, {4, 2}, {3, 9}, {8, 10}, {9, 11}, {10, 1}]

[edit Notes on presentations of 10 9]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 4
Bridge index 2
Super bridge index Missing
Nakanishi index 1
Maximal Thurston-Bennequin number [-3][-9]
Hyperbolic Volume 8.2941
A-Polynomial See Data:10 9/A-polynomial

[edit Notes for 10 9's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus [math]\displaystyle{ 1 }[/math]
Topological 4 genus [math]\displaystyle{ 1 }[/math]
Concordance genus [math]\displaystyle{ 4 }[/math]
Rasmussen s-Invariant -2

[edit Notes for 10 9's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ -t^4+3 t^3-5 t^2+7 t-7+7 t^{-1} -5 t^{-2} +3 t^{-3} - t^{-4} }[/math]
Conway polynomial [math]\displaystyle{ -z^8-5 z^6-7 z^4-2 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 39, 2 }
Jones polynomial [math]\displaystyle{ q^7-2 q^6+3 q^5-5 q^4+6 q^3-6 q^2+6 q-4+3 q^{-1} -2 q^{-2} + q^{-3} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ -z^8 a^{-2} -7 z^6 a^{-2} +z^6 a^{-4} +z^6-17 z^4 a^{-2} +5 z^4 a^{-4} +5 z^4-16 z^2 a^{-2} +7 z^2 a^{-4} +7 z^2-4 a^{-2} +2 a^{-4} +3 }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^9 a^{-1} +z^9 a^{-3} +4 z^8 a^{-2} +2 z^8 a^{-4} +2 z^8+2 a z^7-2 z^7 a^{-1} -2 z^7 a^{-3} +2 z^7 a^{-5} +a^2 z^6-18 z^6 a^{-2} -7 z^6 a^{-4} +2 z^6 a^{-6} -8 z^6-8 a z^5-2 z^5 a^{-1} -4 z^5 a^{-5} +2 z^5 a^{-7} -4 a^2 z^4+31 z^4 a^{-2} +13 z^4 a^{-4} -3 z^4 a^{-6} +z^4 a^{-8} +10 z^4+7 a z^3+4 z^3 a^{-1} +5 z^3 a^{-3} +4 z^3 a^{-5} -4 z^3 a^{-7} +3 a^2 z^2-22 z^2 a^{-2} -8 z^2 a^{-4} +z^2 a^{-6} -2 z^2 a^{-8} -8 z^2-a z-2 z a^{-1} -2 z a^{-3} +z a^{-7} +4 a^{-2} +2 a^{-4} +3 }[/math]
The A2 invariant [math]\displaystyle{ q^8+q^4+ q^{-2} - q^{-4} +2 q^{-6} - q^{-8} - q^{-12} - q^{-14} + q^{-16} + q^{-20} }[/math]
The G2 invariant [math]\displaystyle{ q^{46}-q^{44}+2 q^{42}-3 q^{40}+2 q^{38}-2 q^{36}-q^{34}+6 q^{32}-8 q^{30}+10 q^{28}-9 q^{26}+5 q^{24}+2 q^{22}-10 q^{20}+16 q^{18}-16 q^{16}+14 q^{14}-4 q^{12}-5 q^{10}+15 q^8-14 q^6+12 q^4-4 q^2-4+10 q^{-2} -9 q^{-4} +3 q^{-6} +6 q^{-8} -10 q^{-10} +14 q^{-12} -9 q^{-14} -2 q^{-16} +8 q^{-18} -16 q^{-20} +18 q^{-22} -17 q^{-24} +7 q^{-26} +3 q^{-28} -13 q^{-30} +18 q^{-32} -18 q^{-34} +11 q^{-36} -3 q^{-38} -6 q^{-40} +10 q^{-42} -12 q^{-44} +8 q^{-46} -5 q^{-50} +6 q^{-52} -4 q^{-54} -2 q^{-56} +7 q^{-58} -8 q^{-60} +7 q^{-62} -4 q^{-64} - q^{-66} +6 q^{-68} -8 q^{-70} +11 q^{-72} -8 q^{-74} +6 q^{-76} - q^{-78} -2 q^{-80} +5 q^{-82} -8 q^{-84} +10 q^{-86} -7 q^{-88} +4 q^{-90} -4 q^{-94} +6 q^{-96} -6 q^{-98} +5 q^{-100} -3 q^{-102} + q^{-106} -3 q^{-108} +2 q^{-110} - q^{-112} + q^{-114} }[/math]

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (-2, -2)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ -8 }[/math] [math]\displaystyle{ -16 }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ \frac{260}{3} }[/math] [math]\displaystyle{ \frac{220}{3} }[/math] [math]\displaystyle{ 128 }[/math] [math]\displaystyle{ \frac{1088}{3} }[/math] [math]\displaystyle{ \frac{320}{3} }[/math] [math]\displaystyle{ 144 }[/math] [math]\displaystyle{ -\frac{256}{3} }[/math] [math]\displaystyle{ 128 }[/math] [math]\displaystyle{ -\frac{2080}{3} }[/math] [math]\displaystyle{ -\frac{1760}{3} }[/math] [math]\displaystyle{ -\frac{1231}{15} }[/math] [math]\displaystyle{ \frac{3588}{5} }[/math] [math]\displaystyle{ -\frac{54844}{45} }[/math] [math]\displaystyle{ \frac{2911}{9} }[/math] [math]\displaystyle{ -\frac{6271}{15} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]2 is the signature of 10 9. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-4-3-2-10123456χ
15          11
13         1 -1
11        21 1
9       31  -2
7      32   1
5     33    0
3    33     0
1   24      2
-1  12       -1
-3 12        1
-5 1         -1
-71          1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=1 }[/math] [math]\displaystyle{ i=3 }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

The Coloured Jones Polynomials