10 8

From Knot Atlas
Jump to navigationJump to search

10 7.gif

10_7

10 9.gif

10_9

10 8.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 10 8's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10 8 at Knotilus!


Knot presentations

Planar diagram presentation X1627 X7,16,8,17 X5,13,6,12 X3,15,4,14 X13,5,14,4 X15,3,16,2 X9,18,10,19 X11,20,12,1 X17,8,18,9 X19,10,20,11
Gauss code -1, 6, -4, 5, -3, 1, -2, 9, -7, 10, -8, 3, -5, 4, -6, 2, -9, 7, -10, 8
Dowker-Thistlethwaite code 6 14 12 16 18 20 4 2 8 10
Conway Notation [514]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif

Length is 11, width is 4,

Braid index is 4

10 8 ML.gif 10 8 AP.gif
[{12, 2}, {1, 8}, {9, 3}, {2, 4}, {8, 10}, {11, 9}, {10, 12}, {3, 5}, {4, 6}, {5, 7}, {6, 11}, {7, 1}]

[edit Notes on presentations of 10 8]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 3
Bridge index 2
Super bridge index Missing
Nakanishi index 1
Maximal Thurston-Bennequin number [-11][-1]
Hyperbolic Volume 6.08323
A-Polynomial See Data:10 8/A-polynomial

[edit Notes for 10 8's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus [math]\displaystyle{ 2 }[/math]
Topological 4 genus [math]\displaystyle{ 2 }[/math]
Concordance genus [math]\displaystyle{ 3 }[/math]
Rasmussen s-Invariant -4

[edit Notes for 10 8's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ -2 t^3+5 t^2-5 t+5-5 t^{-1} +5 t^{-2} -2 t^{-3} }[/math]
Conway polynomial [math]\displaystyle{ -2 z^6-7 z^4-3 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 29, -4 }
Jones polynomial [math]\displaystyle{ q^2-q+2-3 q^{-1} +4 q^{-2} -4 q^{-3} +4 q^{-4} -4 q^{-5} +3 q^{-6} -2 q^{-7} + q^{-8} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ z^4 a^6+3 z^2 a^6+a^6-z^6 a^4-4 z^4 a^4-3 z^2 a^4-z^6 a^2-5 z^4 a^2-7 z^2 a^2-3 a^2+z^4+4 z^2+3 }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^2 a^{10}+2 z^3 a^9+3 z^4 a^8-2 z^2 a^8+4 z^5 a^7-7 z^3 a^7+2 z a^7+4 z^6 a^6-10 z^4 a^6+5 z^2 a^6-a^6+3 z^7 a^5-8 z^5 a^5+2 z^3 a^5+z a^5+2 z^8 a^4-6 z^6 a^4+z^4 a^4+3 z^2 a^4+z^9 a^3-3 z^7 a^3-z^5 a^3+5 z^3 a^3-z a^3+3 z^8 a^2-17 z^6 a^2+30 z^4 a^2-18 z^2 a^2+3 a^2+z^9 a-6 z^7 a+11 z^5 a-6 z^3 a+z^8-7 z^6+16 z^4-13 z^2+3 }[/math]
The A2 invariant [math]\displaystyle{ q^{24}+q^{14}-q^{12}-q^8-q^6+1+ q^{-2} + q^{-4} + q^{-6} }[/math]
The G2 invariant [math]\displaystyle{ q^{134}-q^{132}+q^{130}-q^{128}-q^{122}+2 q^{120}-2 q^{118}+2 q^{116}-2 q^{114}+q^{110}-q^{108}+3 q^{106}-3 q^{104}+2 q^{102}-q^{100}-q^{98}+2 q^{96}-3 q^{94}+3 q^{92}-2 q^{90}+q^{88}+q^{86}-q^{84}+2 q^{82}+q^{78}+q^{74}+2 q^{70}+q^{68}+q^{66}+q^{62}-q^{60}-3 q^{54}+3 q^{52}-5 q^{50}+3 q^{48}-q^{46}-5 q^{44}+5 q^{42}-7 q^{40}+2 q^{38}-2 q^{36}-2 q^{34}+2 q^{32}-3 q^{30}+3 q^{28}-q^{26}-2 q^{20}+q^{18}+q^{16}-q^{14}+2 q^{12}-3 q^{10}+3 q^8+q^6-3 q^4+6 q^2-6+4 q^{-2} + q^{-4} -3 q^{-6} +6 q^{-8} -4 q^{-10} +4 q^{-12} +2 q^{-18} -2 q^{-20} +2 q^{-22} + q^{-26} }[/math]

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (-3, 4)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ -12 }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ 72 }[/math] [math]\displaystyle{ 114 }[/math] [math]\displaystyle{ 94 }[/math] [math]\displaystyle{ -384 }[/math] [math]\displaystyle{ -\frac{2368}{3} }[/math] [math]\displaystyle{ -\frac{736}{3} }[/math] [math]\displaystyle{ -224 }[/math] [math]\displaystyle{ -288 }[/math] [math]\displaystyle{ 512 }[/math] [math]\displaystyle{ -1368 }[/math] [math]\displaystyle{ -1128 }[/math] [math]\displaystyle{ \frac{3969}{10} }[/math] [math]\displaystyle{ \frac{16346}{15} }[/math] [math]\displaystyle{ -\frac{8314}{5} }[/math] [math]\displaystyle{ \frac{949}{2} }[/math] [math]\displaystyle{ -\frac{6111}{10} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]-4 is the signature of 10 8. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-6-5-4-3-2-101234χ
5          11
3           0
1        21 1
-1       1   -1
-3      32   1
-5     22    0
-7    22     0
-9   22      0
-11  12       -1
-13 12        1
-15 1         -1
-171          1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-5 }[/math] [math]\displaystyle{ i=-3 }[/math]
[math]\displaystyle{ r=-6 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

The Coloured Jones Polynomials