10 46: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
||
<!-- --> |
<!-- --> <!-- |
||
--> |
|||
{{Rolfsen Knot Page| |
|||
<!-- --> |
|||
n = 10 | |
|||
<!-- --> |
|||
k = 46 | |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-3,2,-6,5,-1,3,-2,4,-9,7,-10,8,-5,6,-4,9,-7,10,-8/goTop.html | |
|||
<span id="top"></span> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<!-- --> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{{Rolfsen Knot Page Header|n=10|k=46|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-3,2,-6,5,-1,3,-2,4,-9,7,-10,8,-5,6,-4,9,-7,10,-8/goTop.html}} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]]</td></tr> |
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr> |
||
</table> |
</table> | |
||
braid_crossings = 10 | |
|||
braid_width = 3 | |
|||
[[Invariants from Braid Theory|Length]] is 10, width is 3. |
|||
braid_index = 3 | |
|||
same_alexander = [[K11n60]], | |
|||
[[Invariants from Braid Theory|Braid index]] is 3. |
|||
same_jones = | |
|||
</td> |
|||
khovanov_table = <table border=1> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{[[K11n60]], ...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
|||
{{Khovanov Homology|table=<table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=6.66667%>6</td ><td width=6.66667%>7</td ><td width=6.66667%>8</td ><td width=13.3333%>χ</td></tr> |
|||
<tr align=center><td>23</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
<tr align=center><td>23</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
||
<tr align=center><td>21</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>-1</td></tr> |
<tr align=center><td>21</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>-1</td></tr> |
||
Line 72: | Line 36: | ||
<tr align=center><td>3</td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
<tr align=center><td>3</td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
||
<tr align=center><td>1</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>1</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>q^{30}-2 q^{29}+q^{28}+2 q^{27}-5 q^{26}+3 q^{25}+2 q^{24}-5 q^{23}+4 q^{22}+q^{21}-6 q^{20}+6 q^{19}+2 q^{18}-9 q^{17}+7 q^{16}+4 q^{15}-12 q^{14}+6 q^{13}+6 q^{12}-12 q^{11}+4 q^{10}+7 q^9-9 q^8+q^7+7 q^6-5 q^5-q^4+4 q^3-q^2-q+1</math> | |
|||
coloured_jones_3 = <math>q^{57}-2 q^{56}+q^{55}+q^{53}-3 q^{52}+q^{51}+3 q^{50}-5 q^{48}-q^{47}+8 q^{46}+3 q^{45}-10 q^{44}-7 q^{43}+13 q^{42}+10 q^{41}-13 q^{40}-17 q^{39}+16 q^{38}+16 q^{37}-10 q^{36}-20 q^{35}+11 q^{34}+14 q^{33}-5 q^{32}-14 q^{31}+6 q^{30}+8 q^{29}-3 q^{28}-6 q^{27}+3 q^{26}+4 q^{25}-3 q^{24}+q^{22}+q^{21}-5 q^{20}+5 q^{19}+q^{18}-2 q^{17}-9 q^{16}+7 q^{15}+6 q^{14}-q^{13}-12 q^{12}+3 q^{11}+8 q^{10}+5 q^9-11 q^8-3 q^7+5 q^6+7 q^5-4 q^4-4 q^3+4 q- q^{-1} - q^{-2} + q^{-3} </math> | |
|||
{{Display Coloured Jones|J2=<math>q^{30}-2 q^{29}+q^{28}+2 q^{27}-5 q^{26}+3 q^{25}+2 q^{24}-5 q^{23}+4 q^{22}+q^{21}-6 q^{20}+6 q^{19}+2 q^{18}-9 q^{17}+7 q^{16}+4 q^{15}-12 q^{14}+6 q^{13}+6 q^{12}-12 q^{11}+4 q^{10}+7 q^9-9 q^8+q^7+7 q^6-5 q^5-q^4+4 q^3-q^2-q+1</math>|J3=<math>q^{57}-2 q^{56}+q^{55}+q^{53}-3 q^{52}+q^{51}+3 q^{50}-5 q^{48}-q^{47}+8 q^{46}+3 q^{45}-10 q^{44}-7 q^{43}+13 q^{42}+10 q^{41}-13 q^{40}-17 q^{39}+16 q^{38}+16 q^{37}-10 q^{36}-20 q^{35}+11 q^{34}+14 q^{33}-5 q^{32}-14 q^{31}+6 q^{30}+8 q^{29}-3 q^{28}-6 q^{27}+3 q^{26}+4 q^{25}-3 q^{24}+q^{22}+q^{21}-5 q^{20}+5 q^{19}+q^{18}-2 q^{17}-9 q^{16}+7 q^{15}+6 q^{14}-q^{13}-12 q^{12}+3 q^{11}+8 q^{10}+5 q^9-11 q^8-3 q^7+5 q^6+7 q^5-4 q^4-4 q^3+4 q- q^{-1} - q^{-2} + q^{-3} </math>|J4=<math>q^{92}-2 q^{91}+q^{90}-q^{88}+3 q^{87}-5 q^{86}+5 q^{85}-q^{84}-3 q^{83}+3 q^{82}-7 q^{81}+14 q^{80}-2 q^{79}-11 q^{78}-2 q^{77}-5 q^{76}+31 q^{75}-2 q^{74}-25 q^{73}-15 q^{72}-q^{71}+59 q^{70}+2 q^{69}-44 q^{68}-37 q^{67}-q^{66}+88 q^{65}+18 q^{64}-53 q^{63}-61 q^{62}-17 q^{61}+102 q^{60}+38 q^{59}-42 q^{58}-67 q^{57}-38 q^{56}+90 q^{55}+42 q^{54}-22 q^{53}-51 q^{52}-47 q^{51}+70 q^{50}+32 q^{49}-12 q^{48}-30 q^{47}-47 q^{46}+55 q^{45}+24 q^{44}-7 q^{43}-15 q^{42}-49 q^{41}+39 q^{40}+21 q^{39}+q^{38}+q^{37}-49 q^{36}+19 q^{35}+12 q^{34}+8 q^{33}+19 q^{32}-40 q^{31}+6 q^{30}-2 q^{29}+2 q^{28}+29 q^{27}-23 q^{26}+7 q^{25}-10 q^{24}-12 q^{23}+23 q^{22}-13 q^{21}+17 q^{20}-2 q^{19}-18 q^{18}+8 q^{17}-16 q^{16}+18 q^{15}+11 q^{14}-7 q^{13}+3 q^{12}-23 q^{11}+5 q^{10}+11 q^9+5 q^8+9 q^7-17 q^6-5 q^5+q^4+4 q^3+11 q^2-5 q-3-3 q^{-1} - q^{-2} +5 q^{-3} - q^{-6} - q^{-7} + q^{-8} </math>|J5=<math>q^{135}-2 q^{134}+q^{133}-q^{131}+q^{130}+q^{129}-q^{128}+q^{127}-q^{126}-4 q^{125}+3 q^{124}+5 q^{123}+q^{122}-2 q^{121}-8 q^{120}-9 q^{119}+10 q^{118}+18 q^{117}+6 q^{116}-16 q^{115}-24 q^{114}-12 q^{113}+27 q^{112}+40 q^{111}+8 q^{110}-42 q^{109}-53 q^{108}-3 q^{107}+60 q^{106}+68 q^{105}-87 q^{103}-90 q^{102}+10 q^{101}+115 q^{100}+114 q^{99}-9 q^{98}-145 q^{97}-151 q^{96}+7 q^{95}+170 q^{94}+183 q^{93}+15 q^{92}-186 q^{91}-217 q^{90}-34 q^{89}+178 q^{88}+234 q^{87}+71 q^{86}-166 q^{85}-239 q^{84}-83 q^{83}+130 q^{82}+224 q^{81}+104 q^{80}-109 q^{79}-204 q^{78}-98 q^{77}+83 q^{76}+178 q^{75}+99 q^{74}-72 q^{73}-162 q^{72}-91 q^{71}+60 q^{70}+150 q^{69}+94 q^{68}-53 q^{67}-141 q^{66}-99 q^{65}+37 q^{64}+134 q^{63}+107 q^{62}-18 q^{61}-119 q^{60}-114 q^{59}-4 q^{58}+98 q^{57}+115 q^{56}+29 q^{55}-73 q^{54}-110 q^{53}-45 q^{52}+42 q^{51}+91 q^{50}+63 q^{49}-13 q^{48}-73 q^{47}-61 q^{46}-12 q^{45}+37 q^{44}+61 q^{43}+32 q^{42}-19 q^{41}-37 q^{40}-36 q^{39}-15 q^{38}+23 q^{37}+33 q^{36}+19 q^{35}+5 q^{34}-14 q^{33}-31 q^{32}-13 q^{31}-q^{30}+11 q^{29}+24 q^{28}+18 q^{27}-7 q^{26}-9 q^{25}-18 q^{24}-19 q^{23}+2 q^{22}+18 q^{21}+11 q^{20}+17 q^{19}+2 q^{18}-18 q^{17}-19 q^{16}-6 q^{15}-4 q^{14}+17 q^{13}+21 q^{12}+7 q^{11}-5 q^{10}-13 q^9-20 q^8-4 q^7+9 q^6+14 q^5+12 q^4+3 q^3-13 q^2-10 q-5+ q^{-1} +8 q^{-2} +9 q^{-3} - q^{-4} -3 q^{-5} -3 q^{-6} -4 q^{-7} +4 q^{-9} + q^{-10} - q^{-13} - q^{-14} + q^{-15} </math>|J6=<math>q^{186}-2 q^{185}+q^{184}-q^{182}+q^{181}-q^{180}+5 q^{179}-5 q^{178}+q^{177}-2 q^{176}-q^{175}+6 q^{174}-2 q^{173}+7 q^{172}-11 q^{171}-2 q^{170}-4 q^{169}+4 q^{168}+19 q^{167}-4 q^{166}+2 q^{165}-22 q^{164}-9 q^{163}-2 q^{162}+19 q^{161}+37 q^{160}-15 q^{159}-9 q^{158}-32 q^{157}-7 q^{156}+6 q^{155}+28 q^{154}+39 q^{153}-44 q^{152}-15 q^{151}-10 q^{150}+30 q^{149}+26 q^{148}+6 q^{147}-15 q^{146}-116 q^{145}-18 q^{144}+68 q^{143}+139 q^{142}+89 q^{141}-33 q^{140}-139 q^{139}-268 q^{138}-65 q^{137}+161 q^{136}+321 q^{135}+241 q^{134}-9 q^{133}-264 q^{132}-493 q^{131}-219 q^{130}+162 q^{129}+482 q^{128}+460 q^{127}+140 q^{126}-265 q^{125}-662 q^{124}-425 q^{123}+19 q^{122}+484 q^{121}+587 q^{120}+325 q^{119}-116 q^{118}-638 q^{117}-510 q^{116}-143 q^{115}+337 q^{114}+515 q^{113}+377 q^{112}+31 q^{111}-480 q^{110}-423 q^{109}-183 q^{108}+208 q^{107}+364 q^{106}+307 q^{105}+70 q^{104}-364 q^{103}-315 q^{102}-157 q^{101}+164 q^{100}+285 q^{99}+264 q^{98}+84 q^{97}-311 q^{96}-290 q^{95}-188 q^{94}+112 q^{93}+254 q^{92}+294 q^{91}+161 q^{90}-229 q^{89}-287 q^{88}-275 q^{87}-2 q^{86}+184 q^{85}+320 q^{84}+272 q^{83}-90 q^{82}-228 q^{81}-338 q^{80}-140 q^{79}+57 q^{78}+280 q^{77}+348 q^{76}+70 q^{75}-102 q^{74}-325 q^{73}-242 q^{72}-95 q^{71}+159 q^{70}+338 q^{69}+197 q^{68}+65 q^{67}-218 q^{66}-255 q^{65}-217 q^{64}-15 q^{63}+221 q^{62}+224 q^{61}+200 q^{60}-45 q^{59}-148 q^{58}-232 q^{57}-155 q^{56}+40 q^{55}+123 q^{54}+214 q^{53}+85 q^{52}+19 q^{51}-116 q^{50}-164 q^{49}-81 q^{48}-25 q^{47}+101 q^{46}+75 q^{45}+107 q^{44}+27 q^{43}-57 q^{42}-59 q^{41}-80 q^{40}-11 q^{39}-29 q^{38}+58 q^{37}+60 q^{36}+24 q^{35}+29 q^{34}-19 q^{33}-7 q^{32}-76 q^{31}-19 q^{30}-2 q^{29}-5 q^{28}+41 q^{27}+31 q^{26}+54 q^{25}-24 q^{24}-8 q^{23}-25 q^{22}-51 q^{21}-16 q^{20}-4 q^{19}+50 q^{18}+10 q^{17}+39 q^{16}+19 q^{15}-23 q^{14}-27 q^{13}-39 q^{12}-21 q^{10}+27 q^9+35 q^8+19 q^7+9 q^6-14 q^5-7 q^4-40 q^3-8 q^2+5 q+13+17 q^{-1} +11 q^{-2} +14 q^{-3} -19 q^{-4} -10 q^{-5} -9 q^{-6} -4 q^{-7} + q^{-8} +6 q^{-9} +14 q^{-10} -2 q^{-11} -3 q^{-13} -3 q^{-14} -4 q^{-15} - q^{-16} +5 q^{-17} + q^{-19} - q^{-22} - q^{-23} + q^{-24} </math>|J7=<math>q^{245}-2 q^{244}+q^{243}-q^{241}+q^{240}-q^{239}+3 q^{238}+q^{237}-5 q^{236}+q^{234}+2 q^{233}+2 q^{232}-5 q^{231}+4 q^{230}+q^{229}-9 q^{228}-q^{227}+7 q^{226}+8 q^{225}+3 q^{224}-11 q^{223}-2 q^{222}-4 q^{221}-10 q^{220}+5 q^{219}+13 q^{218}+17 q^{217}+9 q^{216}-13 q^{215}-17 q^{214}-21 q^{213}-18 q^{212}+6 q^{211}+19 q^{210}+37 q^{209}+43 q^{208}+14 q^{207}-21 q^{206}-66 q^{205}-85 q^{204}-51 q^{203}+8 q^{202}+100 q^{201}+161 q^{200}+135 q^{199}+17 q^{198}-155 q^{197}-282 q^{196}-250 q^{195}-62 q^{194}+214 q^{193}+433 q^{192}+424 q^{191}+156 q^{190}-272 q^{189}-637 q^{188}-658 q^{187}-289 q^{186}+315 q^{185}+845 q^{184}+942 q^{183}+498 q^{182}-294 q^{181}-1049 q^{180}-1273 q^{179}-787 q^{178}+195 q^{177}+1210 q^{176}+1602 q^{175}+1130 q^{174}+4 q^{173}-1247 q^{172}-1881 q^{171}-1523 q^{170}-310 q^{169}+1183 q^{168}+2065 q^{167}+1849 q^{166}+655 q^{165}-965 q^{164}-2080 q^{163}-2090 q^{162}-998 q^{161}+686 q^{160}+1958 q^{159}+2159 q^{158}+1222 q^{157}-386 q^{156}-1716 q^{155}-2067 q^{154}-1312 q^{153}+162 q^{152}+1450 q^{151}+1856 q^{150}+1248 q^{149}-51 q^{148}-1220 q^{147}-1617 q^{146}-1094 q^{145}+60 q^{144}+1084 q^{143}+1401 q^{142}+913 q^{141}-112 q^{140}-1023 q^{139}-1285 q^{138}-793 q^{137}+190 q^{136}+1018 q^{135}+1213 q^{134}+730 q^{133}-182 q^{132}-983 q^{131}-1207 q^{130}-761 q^{129}+132 q^{128}+926 q^{127}+1171 q^{126}+800 q^{125}-3 q^{124}-779 q^{123}-1116 q^{122}-863 q^{121}-152 q^{120}+610 q^{119}+1011 q^{118}+881 q^{117}+307 q^{116}-388 q^{115}-856 q^{114}-881 q^{113}-461 q^{112}+169 q^{111}+683 q^{110}+832 q^{109}+569 q^{108}+61 q^{107}-468 q^{106}-741 q^{105}-664 q^{104}-278 q^{103}+243 q^{102}+617 q^{101}+690 q^{100}+458 q^{99}+9 q^{98}-421 q^{97}-669 q^{96}-620 q^{95}-244 q^{94}+210 q^{93}+559 q^{92}+675 q^{91}+464 q^{90}+65 q^{89}-386 q^{88}-678 q^{87}-608 q^{86}-299 q^{85}+141 q^{84}+547 q^{83}+671 q^{82}+517 q^{81}+120 q^{80}-358 q^{79}-605 q^{78}-627 q^{77}-368 q^{76}+92 q^{75}+455 q^{74}+635 q^{73}+526 q^{72}+152 q^{71}-204 q^{70}-510 q^{69}-593 q^{68}-358 q^{67}-36 q^{66}+315 q^{65}+510 q^{64}+432 q^{63}+259 q^{62}-61 q^{61}-353 q^{60}-416 q^{59}-357 q^{58}-129 q^{57}+136 q^{56}+262 q^{55}+356 q^{54}+261 q^{53}+43 q^{52}-96 q^{51}-247 q^{50}-252 q^{49}-150 q^{48}-69 q^{47}+97 q^{46}+176 q^{45}+147 q^{44}+150 q^{43}+33 q^{42}-55 q^{41}-78 q^{40}-141 q^{39}-85 q^{38}-43 q^{37}-31 q^{36}+76 q^{35}+78 q^{34}+71 q^{33}+83 q^{32}+10 q^{31}-q^{30}-36 q^{29}-109 q^{28}-55 q^{27}-48 q^{26}-21 q^{25}+48 q^{24}+44 q^{23}+83 q^{22}+81 q^{21}-q^{20}-7 q^{19}-51 q^{18}-80 q^{17}-44 q^{16}-50 q^{15}+5 q^{14}+59 q^{13}+42 q^{12}+67 q^{11}+36 q^{10}-8 q^9-13 q^8-55 q^7-55 q^6-23 q^5-22 q^4+27 q^3+40 q^2+28 q+40+9 q^{-1} -13 q^{-2} -20 q^{-3} -42 q^{-4} -19 q^{-5} -3 q^{-6} -2 q^{-7} +21 q^{-8} +21 q^{-9} +17 q^{-10} +13 q^{-11} -13 q^{-12} -11 q^{-13} -8 q^{-14} -13 q^{-15} -4 q^{-16} + q^{-17} +7 q^{-18} +13 q^{-19} + q^{-20} + q^{-22} -4 q^{-23} -3 q^{-24} -4 q^{-25} - q^{-26} +4 q^{-27} + q^{-28} + q^{-30} - q^{-33} - q^{-34} + q^{-35} </math>}} |
|||
coloured_jones_4 = <math>q^{92}-2 q^{91}+q^{90}-q^{88}+3 q^{87}-5 q^{86}+5 q^{85}-q^{84}-3 q^{83}+3 q^{82}-7 q^{81}+14 q^{80}-2 q^{79}-11 q^{78}-2 q^{77}-5 q^{76}+31 q^{75}-2 q^{74}-25 q^{73}-15 q^{72}-q^{71}+59 q^{70}+2 q^{69}-44 q^{68}-37 q^{67}-q^{66}+88 q^{65}+18 q^{64}-53 q^{63}-61 q^{62}-17 q^{61}+102 q^{60}+38 q^{59}-42 q^{58}-67 q^{57}-38 q^{56}+90 q^{55}+42 q^{54}-22 q^{53}-51 q^{52}-47 q^{51}+70 q^{50}+32 q^{49}-12 q^{48}-30 q^{47}-47 q^{46}+55 q^{45}+24 q^{44}-7 q^{43}-15 q^{42}-49 q^{41}+39 q^{40}+21 q^{39}+q^{38}+q^{37}-49 q^{36}+19 q^{35}+12 q^{34}+8 q^{33}+19 q^{32}-40 q^{31}+6 q^{30}-2 q^{29}+2 q^{28}+29 q^{27}-23 q^{26}+7 q^{25}-10 q^{24}-12 q^{23}+23 q^{22}-13 q^{21}+17 q^{20}-2 q^{19}-18 q^{18}+8 q^{17}-16 q^{16}+18 q^{15}+11 q^{14}-7 q^{13}+3 q^{12}-23 q^{11}+5 q^{10}+11 q^9+5 q^8+9 q^7-17 q^6-5 q^5+q^4+4 q^3+11 q^2-5 q-3-3 q^{-1} - q^{-2} +5 q^{-3} - q^{-6} - q^{-7} + q^{-8} </math> | |
|||
coloured_jones_5 = <math>q^{135}-2 q^{134}+q^{133}-q^{131}+q^{130}+q^{129}-q^{128}+q^{127}-q^{126}-4 q^{125}+3 q^{124}+5 q^{123}+q^{122}-2 q^{121}-8 q^{120}-9 q^{119}+10 q^{118}+18 q^{117}+6 q^{116}-16 q^{115}-24 q^{114}-12 q^{113}+27 q^{112}+40 q^{111}+8 q^{110}-42 q^{109}-53 q^{108}-3 q^{107}+60 q^{106}+68 q^{105}-87 q^{103}-90 q^{102}+10 q^{101}+115 q^{100}+114 q^{99}-9 q^{98}-145 q^{97}-151 q^{96}+7 q^{95}+170 q^{94}+183 q^{93}+15 q^{92}-186 q^{91}-217 q^{90}-34 q^{89}+178 q^{88}+234 q^{87}+71 q^{86}-166 q^{85}-239 q^{84}-83 q^{83}+130 q^{82}+224 q^{81}+104 q^{80}-109 q^{79}-204 q^{78}-98 q^{77}+83 q^{76}+178 q^{75}+99 q^{74}-72 q^{73}-162 q^{72}-91 q^{71}+60 q^{70}+150 q^{69}+94 q^{68}-53 q^{67}-141 q^{66}-99 q^{65}+37 q^{64}+134 q^{63}+107 q^{62}-18 q^{61}-119 q^{60}-114 q^{59}-4 q^{58}+98 q^{57}+115 q^{56}+29 q^{55}-73 q^{54}-110 q^{53}-45 q^{52}+42 q^{51}+91 q^{50}+63 q^{49}-13 q^{48}-73 q^{47}-61 q^{46}-12 q^{45}+37 q^{44}+61 q^{43}+32 q^{42}-19 q^{41}-37 q^{40}-36 q^{39}-15 q^{38}+23 q^{37}+33 q^{36}+19 q^{35}+5 q^{34}-14 q^{33}-31 q^{32}-13 q^{31}-q^{30}+11 q^{29}+24 q^{28}+18 q^{27}-7 q^{26}-9 q^{25}-18 q^{24}-19 q^{23}+2 q^{22}+18 q^{21}+11 q^{20}+17 q^{19}+2 q^{18}-18 q^{17}-19 q^{16}-6 q^{15}-4 q^{14}+17 q^{13}+21 q^{12}+7 q^{11}-5 q^{10}-13 q^9-20 q^8-4 q^7+9 q^6+14 q^5+12 q^4+3 q^3-13 q^2-10 q-5+ q^{-1} +8 q^{-2} +9 q^{-3} - q^{-4} -3 q^{-5} -3 q^{-6} -4 q^{-7} +4 q^{-9} + q^{-10} - q^{-13} - q^{-14} + q^{-15} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_6 = <math>q^{186}-2 q^{185}+q^{184}-q^{182}+q^{181}-q^{180}+5 q^{179}-5 q^{178}+q^{177}-2 q^{176}-q^{175}+6 q^{174}-2 q^{173}+7 q^{172}-11 q^{171}-2 q^{170}-4 q^{169}+4 q^{168}+19 q^{167}-4 q^{166}+2 q^{165}-22 q^{164}-9 q^{163}-2 q^{162}+19 q^{161}+37 q^{160}-15 q^{159}-9 q^{158}-32 q^{157}-7 q^{156}+6 q^{155}+28 q^{154}+39 q^{153}-44 q^{152}-15 q^{151}-10 q^{150}+30 q^{149}+26 q^{148}+6 q^{147}-15 q^{146}-116 q^{145}-18 q^{144}+68 q^{143}+139 q^{142}+89 q^{141}-33 q^{140}-139 q^{139}-268 q^{138}-65 q^{137}+161 q^{136}+321 q^{135}+241 q^{134}-9 q^{133}-264 q^{132}-493 q^{131}-219 q^{130}+162 q^{129}+482 q^{128}+460 q^{127}+140 q^{126}-265 q^{125}-662 q^{124}-425 q^{123}+19 q^{122}+484 q^{121}+587 q^{120}+325 q^{119}-116 q^{118}-638 q^{117}-510 q^{116}-143 q^{115}+337 q^{114}+515 q^{113}+377 q^{112}+31 q^{111}-480 q^{110}-423 q^{109}-183 q^{108}+208 q^{107}+364 q^{106}+307 q^{105}+70 q^{104}-364 q^{103}-315 q^{102}-157 q^{101}+164 q^{100}+285 q^{99}+264 q^{98}+84 q^{97}-311 q^{96}-290 q^{95}-188 q^{94}+112 q^{93}+254 q^{92}+294 q^{91}+161 q^{90}-229 q^{89}-287 q^{88}-275 q^{87}-2 q^{86}+184 q^{85}+320 q^{84}+272 q^{83}-90 q^{82}-228 q^{81}-338 q^{80}-140 q^{79}+57 q^{78}+280 q^{77}+348 q^{76}+70 q^{75}-102 q^{74}-325 q^{73}-242 q^{72}-95 q^{71}+159 q^{70}+338 q^{69}+197 q^{68}+65 q^{67}-218 q^{66}-255 q^{65}-217 q^{64}-15 q^{63}+221 q^{62}+224 q^{61}+200 q^{60}-45 q^{59}-148 q^{58}-232 q^{57}-155 q^{56}+40 q^{55}+123 q^{54}+214 q^{53}+85 q^{52}+19 q^{51}-116 q^{50}-164 q^{49}-81 q^{48}-25 q^{47}+101 q^{46}+75 q^{45}+107 q^{44}+27 q^{43}-57 q^{42}-59 q^{41}-80 q^{40}-11 q^{39}-29 q^{38}+58 q^{37}+60 q^{36}+24 q^{35}+29 q^{34}-19 q^{33}-7 q^{32}-76 q^{31}-19 q^{30}-2 q^{29}-5 q^{28}+41 q^{27}+31 q^{26}+54 q^{25}-24 q^{24}-8 q^{23}-25 q^{22}-51 q^{21}-16 q^{20}-4 q^{19}+50 q^{18}+10 q^{17}+39 q^{16}+19 q^{15}-23 q^{14}-27 q^{13}-39 q^{12}-21 q^{10}+27 q^9+35 q^8+19 q^7+9 q^6-14 q^5-7 q^4-40 q^3-8 q^2+5 q+13+17 q^{-1} +11 q^{-2} +14 q^{-3} -19 q^{-4} -10 q^{-5} -9 q^{-6} -4 q^{-7} + q^{-8} +6 q^{-9} +14 q^{-10} -2 q^{-11} -3 q^{-13} -3 q^{-14} -4 q^{-15} - q^{-16} +5 q^{-17} + q^{-19} - q^{-22} - q^{-23} + q^{-24} </math> | |
|||
coloured_jones_7 = <math>q^{245}-2 q^{244}+q^{243}-q^{241}+q^{240}-q^{239}+3 q^{238}+q^{237}-5 q^{236}+q^{234}+2 q^{233}+2 q^{232}-5 q^{231}+4 q^{230}+q^{229}-9 q^{228}-q^{227}+7 q^{226}+8 q^{225}+3 q^{224}-11 q^{223}-2 q^{222}-4 q^{221}-10 q^{220}+5 q^{219}+13 q^{218}+17 q^{217}+9 q^{216}-13 q^{215}-17 q^{214}-21 q^{213}-18 q^{212}+6 q^{211}+19 q^{210}+37 q^{209}+43 q^{208}+14 q^{207}-21 q^{206}-66 q^{205}-85 q^{204}-51 q^{203}+8 q^{202}+100 q^{201}+161 q^{200}+135 q^{199}+17 q^{198}-155 q^{197}-282 q^{196}-250 q^{195}-62 q^{194}+214 q^{193}+433 q^{192}+424 q^{191}+156 q^{190}-272 q^{189}-637 q^{188}-658 q^{187}-289 q^{186}+315 q^{185}+845 q^{184}+942 q^{183}+498 q^{182}-294 q^{181}-1049 q^{180}-1273 q^{179}-787 q^{178}+195 q^{177}+1210 q^{176}+1602 q^{175}+1130 q^{174}+4 q^{173}-1247 q^{172}-1881 q^{171}-1523 q^{170}-310 q^{169}+1183 q^{168}+2065 q^{167}+1849 q^{166}+655 q^{165}-965 q^{164}-2080 q^{163}-2090 q^{162}-998 q^{161}+686 q^{160}+1958 q^{159}+2159 q^{158}+1222 q^{157}-386 q^{156}-1716 q^{155}-2067 q^{154}-1312 q^{153}+162 q^{152}+1450 q^{151}+1856 q^{150}+1248 q^{149}-51 q^{148}-1220 q^{147}-1617 q^{146}-1094 q^{145}+60 q^{144}+1084 q^{143}+1401 q^{142}+913 q^{141}-112 q^{140}-1023 q^{139}-1285 q^{138}-793 q^{137}+190 q^{136}+1018 q^{135}+1213 q^{134}+730 q^{133}-182 q^{132}-983 q^{131}-1207 q^{130}-761 q^{129}+132 q^{128}+926 q^{127}+1171 q^{126}+800 q^{125}-3 q^{124}-779 q^{123}-1116 q^{122}-863 q^{121}-152 q^{120}+610 q^{119}+1011 q^{118}+881 q^{117}+307 q^{116}-388 q^{115}-856 q^{114}-881 q^{113}-461 q^{112}+169 q^{111}+683 q^{110}+832 q^{109}+569 q^{108}+61 q^{107}-468 q^{106}-741 q^{105}-664 q^{104}-278 q^{103}+243 q^{102}+617 q^{101}+690 q^{100}+458 q^{99}+9 q^{98}-421 q^{97}-669 q^{96}-620 q^{95}-244 q^{94}+210 q^{93}+559 q^{92}+675 q^{91}+464 q^{90}+65 q^{89}-386 q^{88}-678 q^{87}-608 q^{86}-299 q^{85}+141 q^{84}+547 q^{83}+671 q^{82}+517 q^{81}+120 q^{80}-358 q^{79}-605 q^{78}-627 q^{77}-368 q^{76}+92 q^{75}+455 q^{74}+635 q^{73}+526 q^{72}+152 q^{71}-204 q^{70}-510 q^{69}-593 q^{68}-358 q^{67}-36 q^{66}+315 q^{65}+510 q^{64}+432 q^{63}+259 q^{62}-61 q^{61}-353 q^{60}-416 q^{59}-357 q^{58}-129 q^{57}+136 q^{56}+262 q^{55}+356 q^{54}+261 q^{53}+43 q^{52}-96 q^{51}-247 q^{50}-252 q^{49}-150 q^{48}-69 q^{47}+97 q^{46}+176 q^{45}+147 q^{44}+150 q^{43}+33 q^{42}-55 q^{41}-78 q^{40}-141 q^{39}-85 q^{38}-43 q^{37}-31 q^{36}+76 q^{35}+78 q^{34}+71 q^{33}+83 q^{32}+10 q^{31}-q^{30}-36 q^{29}-109 q^{28}-55 q^{27}-48 q^{26}-21 q^{25}+48 q^{24}+44 q^{23}+83 q^{22}+81 q^{21}-q^{20}-7 q^{19}-51 q^{18}-80 q^{17}-44 q^{16}-50 q^{15}+5 q^{14}+59 q^{13}+42 q^{12}+67 q^{11}+36 q^{10}-8 q^9-13 q^8-55 q^7-55 q^6-23 q^5-22 q^4+27 q^3+40 q^2+28 q+40+9 q^{-1} -13 q^{-2} -20 q^{-3} -42 q^{-4} -19 q^{-5} -3 q^{-6} -2 q^{-7} +21 q^{-8} +21 q^{-9} +17 q^{-10} +13 q^{-11} -13 q^{-12} -11 q^{-13} -8 q^{-14} -13 q^{-15} -4 q^{-16} + q^{-17} +7 q^{-18} +13 q^{-19} + q^{-20} + q^{-22} -4 q^{-23} -3 q^{-24} -4 q^{-25} - q^{-26} +4 q^{-27} + q^{-28} + q^{-30} - q^{-33} - q^{-34} + q^{-35} </math> | |
|||
<table> |
|||
computer_talk = |
|||
<tr valign=top> |
|||
<table> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<tr valign=top> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
</tr> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 46]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 46]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[8, 4, 9, 3], X[2, 8, 3, 7], X[16, 10, 17, 9], |
|||
X[14, 5, 15, 6], X[4, 15, 5, 16], X[18, 12, 19, 11], |
X[14, 5, 15, 6], X[4, 15, 5, 16], X[18, 12, 19, 11], |
||
X[20, 14, 1, 13], X[10, 18, 11, 17], X[12, 20, 13, 19]]</nowiki></pre></td></tr> |
X[20, 14, 1, 13], X[10, 18, 11, 17], X[12, 20, 13, 19]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 46]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -3, 2, -6, 5, -1, 3, -2, 4, -9, 7, -10, 8, -5, 6, -4, 9, |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -3, 2, -6, 5, -1, 3, -2, 4, -9, 7, -10, 8, -5, 6, -4, 9, |
|||
-7, 10, -8]</nowiki></pre></td></tr> |
-7, 10, -8]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 46]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[6, 8, 14, 2, 16, 18, 20, 4, 10, 12]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 46]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {1, 1, 1, 1, 1, -2, 1, 1, 1, -2}]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 10}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 46]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 46]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_46_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 46]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 3, 4, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 46]][t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 3 4 5 2 3 4 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 46]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_46_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 46]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 3, 4, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 46]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 3 4 5 2 3 4 |
|||
-5 - t + -- - -- + - + 5 t - 4 t + 3 t - t |
-5 - t + -- - -- + - + 5 t - 4 t + 3 t - t |
||
3 2 t |
3 2 t |
||
t t</nowiki></pre></td></tr> |
t t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 46]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4 6 8 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4 6 8 |
|||
1 - 6 z - 5 z - z</nowiki></pre></td></tr> |
1 - 6 z - 5 z - z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 46], Knot[11, NonAlternating, 60]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 46]], KnotSignature[Knot[10, 46]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{31, 6}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 46]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 3 4 5 6 7 8 9 10 11 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 46]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 3 4 5 6 7 8 9 10 11 |
|||
q - q + 3 q - 3 q + 4 q - 5 q + 4 q - 4 q + 3 q - 2 q + q</nowiki></pre></td></tr> |
q - q + 3 q - 3 q + 4 q - 5 q + 4 q - 4 q + 3 q - 2 q + q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 46]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 46]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4 6 8 10 12 14 16 18 20 22 28 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 46]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4 6 8 10 12 14 16 18 20 22 28 |
|||
q + q + 2 q + 2 q + q + q - 2 q - q - 3 q - q + q + |
q + q + 2 q + 2 q + q + q - 2 q - q - 3 q - q + q + |
||
32 |
32 |
||
q</nowiki></pre></td></tr> |
q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 46]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 4 4 4 6 6 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 4 4 4 6 6 |
|||
3 8 6 7 z 18 z 11 z 5 z 17 z 6 z z 7 z |
3 8 6 7 z 18 z 11 z 5 z 17 z 6 z z 7 z |
||
-- - -- + -- + ---- - ----- + ----- + ---- - ----- + ---- + -- - ---- + |
-- - -- + -- + ---- - ----- + ----- + ---- - ----- + ---- + -- - ---- + |
||
Line 156: | Line 106: | ||
4 6 |
4 6 |
||
a a</nowiki></pre></td></tr> |
a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 46]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 2 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 2 |
|||
3 8 6 2 z 2 z 10 z 6 z z 2 z 2 z 7 z |
3 8 6 2 z 2 z 10 z 6 z z 2 z 2 z 7 z |
||
-- + -- + -- + --- - --- - ---- - --- + --- - ---- + ---- - ---- - |
-- + -- + -- + --- - --- - ---- - --- + --- - ---- + ---- - ---- - |
||
Line 181: | Line 130: | ||
6 4 9 7 5 8 6 4 7 5 |
6 4 9 7 5 8 6 4 7 5 |
||
a a a a a a a a a a</nowiki></pre></td></tr> |
a a a a a a a a a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 46]], Vassiliev[3][Knot[10, 46]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, -4}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 46]][q, t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 5 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 46]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 5 |
|||
5 7 q q 7 9 9 2 11 2 11 3 |
5 7 q q 7 9 9 2 11 2 11 3 |
||
3 q + q + -- + -- + q t + 2 q t + 3 q t + q t + 2 q t + |
3 q + q + -- + -- + q t + 2 q t + 3 q t + q t + 2 q t + |
||
Line 197: | Line 144: | ||
19 6 19 7 21 7 23 8 |
19 6 19 7 21 7 23 8 |
||
2 q t + q t + q t + q t</nowiki></pre></td></tr> |
2 q t + q t + q t + q t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 46], 2][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 3 4 5 6 7 8 9 10 |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 3 4 5 6 7 8 9 10 |
|||
1 - q - q + 4 q - q - 5 q + 7 q + q - 9 q + 7 q + 4 q - |
1 - q - q + 4 q - q - 5 q + 7 q + q - 9 q + 7 q + 4 q - |
||
Line 210: | Line 156: | ||
28 29 30 |
28 29 30 |
||
q - 2 q + q</nowiki></pre></td></tr> |
q - 2 q + q</nowiki></pre></td></tr> |
||
</table> }} |
|||
</table> |
|||
{| width=100% |
|||
|align=left|See/edit the [[Rolfsen_Splice_Template]]. |
|||
Back to the [[#top|top]]. |
|||
|align=right|{{Knot Navigation Links|ext=gif}} |
|||
|} |
|||
[[Category:Knot Page]] |
Revision as of 09:40, 30 August 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 46's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
10_46 is also known as the pretzel knot P(5,3,2). |
Knot presentations
Planar diagram presentation | X6271 X8493 X2837 X16,10,17,9 X14,5,15,6 X4,15,5,16 X18,12,19,11 X20,14,1,13 X10,18,11,17 X12,20,13,19 |
Gauss code | 1, -3, 2, -6, 5, -1, 3, -2, 4, -9, 7, -10, 8, -5, 6, -4, 9, -7, 10, -8 |
Dowker-Thistlethwaite code | 6 8 14 2 16 18 20 4 10 12 |
Conway Notation | [5,3,2] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||
Length is 10, width is 3, Braid index is 3 |
[{8, 13}, {1, 12}, {13, 11}, {12, 6}, {10, 5}, {11, 9}, {7, 10}, {6, 4}, {5, 3}, {4, 2}, {3, 8}, {2, 7}, {9, 1}] |
[edit Notes on presentations of 10 46]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 46"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X6271 X8493 X2837 X16,10,17,9 X14,5,15,6 X4,15,5,16 X18,12,19,11 X20,14,1,13 X10,18,11,17 X12,20,13,19 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -3, 2, -6, 5, -1, 3, -2, 4, -9, 7, -10, 8, -5, 6, -4, 9, -7, 10, -8 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
6 8 14 2 16 18 20 4 10 12 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[5,3,2] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{BR}(3,\{1,1,1,1,1,-2,1,1,1,-2\})} |
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 3, 10, 3 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{8, 13}, {1, 12}, {13, 11}, {12, 6}, {10, 5}, {11, 9}, {7, 10}, {6, 4}, {5, 3}, {4, 2}, {3, 8}, {2, 7}, {9, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-10} + q^{-12} +3 q^{-14} +3 q^{-16} +4 q^{-18} +4 q^{-20} +2 q^{-22} + q^{-24} -3 q^{-26} -3 q^{-28} -6 q^{-30} -4 q^{-32} -4 q^{-34} - q^{-36} + q^{-40} +2 q^{-42} + q^{-44} +2 q^{-46} + q^{-50} } |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-8} +3 q^{-12} - q^{-14} +4 q^{-16} -2 q^{-18} +5 q^{-20} -2 q^{-22} +3 q^{-24} -2 q^{-26} -4 q^{-32} +3 q^{-34} -6 q^{-36} +5 q^{-38} -7 q^{-40} +5 q^{-42} -5 q^{-44} +4 q^{-46} -3 q^{-48} +2 q^{-50} - q^{-54} +2 q^{-56} -2 q^{-58} +2 q^{-60} -2 q^{-62} +3 q^{-64} -2 q^{-66} +2 q^{-68} -2 q^{-70} + q^{-72} - q^{-74} + q^{-76} } |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 46"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 31, 6 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11n60,}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 46"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11n60,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (0, -4) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 6 is the signature of 10 46. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|