The Coloured Jones Polynomials: Difference between revisions
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 7: | Line 7: | ||
<!--$$?ColouredJones$$--> |
<!--$$?ColouredJones$$--> |
||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{HelpAndAbout| |
|||
{{HelpAndAbout1|n=1|s=ColouredJones}} |
|||
n = 1 | |
|||
⚫ | |||
n1 = 2 | |
|||
{{HelpAndAbout2|n=2|s=ColouredJones}} |
|||
in = <nowiki>ColouredJones</nowiki> | |
|||
⚫ | |||
⚫ | out= <nowiki>ColouredJones[br, n][q] computes the coloured Jones polynomial of the closure of the braid br in colour n (i.e., in the (n+1)-dimensional representation) and with respect to the variable q. ColouredJones[K, n][q] does the same for knots for which a braid representative is known to this program.</nowiki> | |
||
{{HelpAndAbout3}} |
|||
⚫ | |||
<!--END--> |
<!--END--> |
||
Line 19: | Line 20: | ||
<!--$$ColouredJones[Knot[4, 1], 3][q]$$--> |
<!--$$ColouredJones[Knot[4, 1], 3][q]$$--> |
||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{ |
{{InOut| |
||
n = 3 | |
|||
in = <nowiki>ColouredJones[Knot[4, 1], 3][q]</nowiki> | |
|||
⚫ | |||
out= <nowiki> -12 -11 -10 2 2 3 3 2 4 6 |
|||
3 + q - q - q + -- - -- + -- - -- - 3 q + 3 q - 2 q + |
|||
8 6 4 2 |
8 6 4 2 |
||
q q q q |
q q q q |
||
{{InOut3}} |
|||
8 10 11 12 |
|||
⚫ | |||
<!--END--> |
<!--END--> |
||
Line 34: | Line 38: | ||
<!--$$ColouredJones[Knot[4, 1], 1][q]$$--> |
<!--$$ColouredJones[Knot[4, 1], 1][q]$$--> |
||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{ |
{{InOut| |
||
n = 4 | |
|||
in = <nowiki>ColouredJones[Knot[4, 1], 1][q]</nowiki> | |
|||
{{InOut2|n=4}}<pre style="border: 0px; padding: 0em"><nowiki> -2 1 2 |
|||
out= <nowiki> -2 1 2 |
|||
1 + q - - - q + q |
1 + q - - - q + q |
||
q</nowiki> |
q</nowiki>}} |
||
{{InOut3}} |
|||
<!--END--> |
<!--END--> |
||
<!--$$Jones[Knot[4, 1]][q]$$--> |
<!--$$Jones[Knot[4, 1]][q]$$--> |
||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{ |
{{InOut| |
||
n = 5 | |
|||
in = <nowiki>Jones[Knot[4, 1]][q]</nowiki> | |
|||
{{InOut2|n=5}}<pre style="border: 0px; padding: 0em"><nowiki> -2 1 2 |
|||
out= <nowiki> -2 1 2 |
|||
1 + q - - - q + q |
1 + q - - - q + q |
||
q</nowiki> |
q</nowiki>}} |
||
{{InOut3}} |
|||
<!--END--> |
<!--END--> |
||
<!--$$?CJ`Summand$$--> |
<!--$$?CJ`Summand$$--> |
||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{HelpLine| |
|||
{{Help1|n=6|s=CJ`Summand}} |
|||
n = 6 | |
|||
⚫ | CJ`Summand[br, n] returned a pair {s, vars} where s is the summand in the the big sum that makes up ColouredJones[br, n][q] and where vars is the list of variables that need to be summed over (from 0 to n) to get ColouredJones[br, n][q]. CJ`Summand[K, n] is the same for knots for which a braid representative is known to this program. |
||
in = <nowiki>CJ`Summand</nowiki> | |
|||
{{Help2}} |
|||
⚫ | out= <nowiki>CJ`Summand[br, n] returned a pair {s, vars} where s is the summand in the the big sum that makes up ColouredJones[br, n][q] and where vars is the list of variables that need to be summed over (from 0 to n) to get ColouredJones[br, n][q]. CJ`Summand[K, n] is the same for knots for which a braid representative is known to this program.</nowiki>}} |
||
<!--END--> |
<!--END--> |
||
Line 63: | Line 68: | ||
<!--$$s = CJ`Summand[Mirror[Knot[3, 1]], n]$$--> |
<!--$$s = CJ`Summand[Mirror[Knot[3, 1]], n]$$--> |
||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{ |
{{InOut| |
||
n = 7 | |
|||
in = <nowiki>s = CJ`Summand[Mirror[Knot[3, 1]], n]</nowiki> | |
|||
{{InOut2|n=7}}<pre style="border: 0px; padding: 0em"><nowiki> (3 n)/2 + n CJ`k[1] + (-n + 2 CJ`k[1])/2 1 1 |
|||
out= <nowiki> (3 n)/2 + n CJ`k[1] + (-n + 2 CJ`k[1])/2 1 |
|||
{CJ`q qBinomial[0, 0, ----] |
|||
⚫ | |||
⚫ | |||
qBinomial[CJ`k[1], 0, ----] qBinomial[CJ`k[1], CJ`k[1], ----] |
|||
CJ`q CJ`q |
|||
n 1 n 1 |
|||
qPochhammer[CJ`q , ----, 0] qPochhammer[CJ`q , ----, CJ`k[1]] |
|||
CJ`q CJ`q |
|||
n - CJ`k[1] 1 |
|||
qPochhammer[CJ`q , ----, 0], {CJ`k[1]}} |
|||
CJ`q</nowiki>}} |
|||
{{InOut3}} |
|||
<!--END--> |
<!--END--> |
||
Line 83: | Line 92: | ||
<!--$$?qPochhammer$$--> |
<!--$$?qPochhammer$$--> |
||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{HelpLine| |
|||
{{Help1|n=8|s=qPochhammer}} |
|||
n = 8 | |
|||
⚫ | |||
in = <nowiki>qPochhammer</nowiki> | |
|||
⚫ | |||
http://mathworld.wolfram.com/q-PochhammerSymbol.html and Axel Riese's |
http://mathworld.wolfram.com/q-PochhammerSymbol.html and Axel Riese's |
||
www.risc.uni-linz.ac.at/research/combinat/risc/software/qMultiSum/ |
www.risc.uni-linz.ac.at/research/combinat/risc/software/qMultiSum/</nowiki>}} |
||
{{Help2}} |
|||
<!--END--> |
<!--END--> |
||
<!--$$?qBinomial$$--> |
<!--$$?qBinomial$$--> |
||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{HelpLine| |
|||
{{Help1|n=9|s=qBinomial}} |
|||
n = 9 | |
|||
⚫ | |||
in = <nowiki>qBinomial</nowiki> | |
|||
⚫ | |||
⚫ | |||
{{Help2}} |
|||
⚫ | |||
<!--END--> |
<!--END--> |
||
Line 123: | Line 134: | ||
<!--$$?qExpand$$--> |
<!--$$?qExpand$$--> |
||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{HelpLine| |
|||
{{Help1|n=10|s=qExpand}} |
|||
n = 10 | |
|||
⚫ | |||
in = <nowiki>qExpand</nowiki> | |
|||
{{Help2}} |
|||
⚫ | |||
<!--END--> |
<!--END--> |
||
Line 132: | Line 144: | ||
<!--$$qPochhammer[a, q, 6] // qExpand$$--> |
<!--$$qPochhammer[a, q, 6] // qExpand$$--> |
||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{InOut| |
|||
{{InOut1|n=11}} |
|||
n = 11 | |
|||
in = <nowiki>qPochhammer[a, q, 6] // qExpand</nowiki> | |
|||
⚫ | |||
out= <nowiki> 2 3 4 5 |
|||
(-1 + a) (-1 + a q) (-1 + a q ) (-1 + a q ) (-1 + a q ) (-1 + a q )</nowiki>}} |
|||
{{InOut3}} |
|||
<!--END--> |
<!--END--> |
||
<!--$$First[s] /. {n -> 3, CJ`k[1] -> 2} // qExpand$$--> |
<!--$$First[s] /. {n -> 3, CJ`k[1] -> 2} // qExpand$$--> |
||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{InOut| |
|||
{{InOut1|n=12}} |
|||
n = 12 | |
|||
in = <nowiki>First[s] /. {n -> 3, CJ`k[1] -> 2} // qExpand</nowiki> | |
|||
out= <nowiki> 11 2 3 |
|||
⚫ | |||
CJ`q (-1 + CJ`q ) (-1 + CJ`q )</nowiki>}} |
|||
{{InOut3}} |
|||
<!--END--> |
<!--END--> |
||
Line 154: | Line 166: | ||
<!--$$?ColoredJones$$--> |
<!--$$?ColoredJones$$--> |
||
<!--Robot Land, no human edits to "END"--> |
<!--Robot Land, no human edits to "END"--> |
||
{{HelpLine| |
|||
{{Help1|n=13|s=ColoredJones}} |
|||
n = 13 | |
|||
⚫ | |||
in = <nowiki>ColoredJones</nowiki> | |
|||
{{Help2}} |
|||
⚫ | |||
<!--END--> |
<!--END--> |
||
Revision as of 13:08, 30 August 2005
KnotTheory`
can compute the coloured Jones polynomial of braid
closures, using the same formulas as in [Garoufalidis Le]:
(For In[1] see Setup)
|
|
Thus, for example, here's the coloured Jones polynomial of the knot 4_1 in the 4-dimensional representation of :
In[3]:=
|
ColouredJones[Knot[4, 1], 3][q]
|
Out[3]=
|
-12 -11 -10 2 2 3 3 2 4 6
3 + q - q - q + -- - -- + -- - -- - 3 q + 3 q - 2 q +
8 6 4 2
q q q q
8 10 11 12
2 q - q - q + q
|
And here's the coloured Jones polynomial of the same knot in the two dimensional representation of ; this better be equal to the ordinary Jones polynomial of 4_1!
In[4]:=
|
ColouredJones[Knot[4, 1], 1][q]
|
Out[4]=
|
-2 1 2
1 + q - - - q + q
q
|
In[5]:=
|
Jones[Knot[4, 1]][q]
|
Out[5]=
|
-2 1 2
1 + q - - - q + q
q
|
|
The coloured Jones polynomial of 3_1 is computed via a single summation. Indeed,
In[7]:=
|
s = CJ`Summand[Mirror[Knot[3, 1]], n]
|
Out[7]=
|
(3 n)/2 + n CJ`k[1] + (-n + 2 CJ`k[1])/2 1
{CJ`q qBinomial[0, 0, ----]
CJ`q
1 1
qBinomial[CJ`k[1], 0, ----] qBinomial[CJ`k[1], CJ`k[1], ----]
CJ`q CJ`q
n 1 n 1
qPochhammer[CJ`q , ----, 0] qPochhammer[CJ`q , ----, CJ`k[1]]
CJ`q CJ`q
n - CJ`k[1] 1
qPochhammer[CJ`q , ----, 0], {CJ`k[1]}}
CJ`q
|
The symbols in the above formula require a definition:
|
|
More precisely, qPochhammer[a, q, k]
is
and qBinomial[n, k, q]
is
The function qExpand
replaces every occurence of a qPochhammer[a, q, k]
symbol or a qBinomial[n, k, q]
symbol by its definition:
|
Hence,
In[11]:=
|
qPochhammer[a, q, 6] // qExpand
|
Out[11]=
|
2 3 4 5
(-1 + a) (-1 + a q) (-1 + a q ) (-1 + a q ) (-1 + a q ) (-1 + a q )
|
In[12]:=
|
First[s] /. {n -> 3, CJ`k[1] -> 2} // qExpand
|
Out[12]=
|
11 2 3
CJ`q (-1 + CJ`q ) (-1 + CJ`q )
|
Finally,
|
[Garoufalidis Le] ^ S. Garoufalidis and T. Q. T. Le, The Colored Jones Function is -Holonomic, Georgia Institute of Technology preprint, September 2003, arXiv:math.GT/0309214.