The A2 Invariant: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
No edit summary |
No edit summary |
||
Line 6: | Line 6: | ||
<!--$$?A2Invariant$$--> |
<!--$$?A2Invariant$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{{Help1|n= |
{{Help1|n=1|s=A2Invariant}} |
||
A2Invariant[L][q] computes the A2 (sl(3)) invariant of a knot or link L as a function of the variable q. |
A2Invariant[L][q] computes the A2 (sl(3)) invariant of a knot or link L as a function of the variable q. |
||
{{Help2}} |
{{Help2}} |
||
Line 20: | Line 20: | ||
<!--$$Jones[Knot[10, 22]][q] == Jones[Knot[10, 35]][q]$$--> |
<!--$$Jones[Knot[10, 22]][q] == Jones[Knot[10, 35]][q]$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{{InOut1|n= |
{{InOut1|n=2}} |
||
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 22]][q] == Jones[Knot[10, 35]][q]</nowiki></pre> |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 22]][q] == Jones[Knot[10, 35]][q]</nowiki></pre> |
||
{{InOut2|n= |
{{InOut2|n=2}}<pre style="border: 0px; padding: 0em"><nowiki>True</nowiki></pre> |
||
{{InOut3}} |
{{InOut3}} |
||
<!--END--> |
<!--END--> |
||
<!--$$A2Invariant[Knot[10, 22]][q]$$--> |
<!--$$A2Invariant[Knot[10, 22]][q]$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{{InOut1|n= |
{{InOut1|n=3}} |
||
<pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 22]][q]</nowiki></pre> |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 22]][q]</nowiki></pre> |
||
{{InOut2|n= |
{{InOut2|n=3}}<pre style="border: 0px; padding: 0em"><nowiki> -12 -8 -6 -4 2 4 6 8 10 12 14 18 |
||
-1 + q + q + q - q + -- - q - 2 q + q - q + q + q + q |
-1 + q + q + q - q + -- - q - 2 q + q - q + q + q + q |
||
2 |
2 |
||
Line 39: | Line 39: | ||
<!--$$A2Invariant[Knot[10, 35]][q]$$--> |
<!--$$A2Invariant[Knot[10, 35]][q]$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{{InOut1|n= |
{{InOut1|n=4}} |
||
<pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 35]][q]</nowiki></pre> |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 35]][q]</nowiki></pre> |
||
{{InOut2|n= |
{{InOut2|n=4}}<pre style="border: 0px; padding: 0em"><nowiki> -14 -12 -10 -8 2 2 2 6 8 10 14 16 18 20 |
||
q + q - q + q - -- + -- + q - q + q - 2 q + q - q + q + q |
q + q - q + q - -- + -- + q - q + q - 2 q + q - q + q + q |
||
4 2 |
4 2 |
||
Line 49: | Line 49: | ||
<!--END--> |
<!--END--> |
||
The <math>A2</math> invariant attains <!--$all=Join[AllKnots[], AllLinks[]]; Length[Union[A2Invariant[#][q]& /@ all]]$--><!-- |
The <math>A2</math> invariant attains <!--$all=Join[AllKnots[], AllLinks[]]; Length[Union[A2Invariant[#][q]& /@ all]]$--><!--Robot Land, no human edits to "END"-->2163<!--END--> values on the <!--$Length[all]$--><!--Robot Land, no human edits to "END"-->2226<!--END--> knots and links known to <code>KnotTheory</code>: |
||
<!--$$all = Join[AllKnots[], AllLinks[]];$$--> |
<!--$$all = Join[AllKnots[], AllLinks[]];$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{{In1|n= |
{{In1|n=5}} |
||
<pre style="color: red; border: 0px; padding: 0em"><nowiki>all = Join[AllKnots[], AllLinks[]];</nowiki></pre> |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>all = Join[AllKnots[], AllLinks[]];</nowiki></pre> |
||
{{In2}} |
{{In2}} |
||
Line 59: | Line 59: | ||
<!--$$Length /@ {Union[A2Invariant[#][q]& /@ all], all}$$--> |
<!--$$Length /@ {Union[A2Invariant[#][q]& /@ all], all}$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{{InOut1|n= |
{{InOut1|n=6}} |
||
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Length /@ {Union[A2Invariant[#][q]& /@ all], all}</nowiki></pre> |
<pre style="color: red; border: 0px; padding: 0em"><nowiki>Length /@ {Union[A2Invariant[#][q]& /@ all], all}</nowiki></pre> |
||
{{InOut2|n= |
{{InOut2|n=6}}<pre style="border: 0px; padding: 0em"><nowiki>{2163, 2226}</nowiki></pre> |
||
{{InOut3}} |
{{InOut3}} |
||
<!--END--> |
<!--END--> |
Revision as of 19:44, 27 August 2005
We compute the (or quantum ) invariant using the normalization and formulas of [Khovanov], which in itself follows [Kuperberg]:
(For In[1] see Setup)
In[1]:= ?A2Invariant
A2Invariant[L][q] computes the A2 (sl(3)) invariant of a knot or link L as a function of the variable q. |
As an example, let us check that the knots 10_22 and 10_35 have the same Jones polynomial but different invariants:
In[2]:= |
Jones[Knot[10, 22]][q] == Jones[Knot[10, 35]][q] |
Out[2]= | True |
In[3]:= |
A2Invariant[Knot[10, 22]][q] |
Out[3]= | -12 -8 -6 -4 2 4 6 8 10 12 14 18 -1 + q + q + q - q + -- - q - 2 q + q - q + q + q + q 2 q |
In[4]:= |
A2Invariant[Knot[10, 35]][q] |
Out[4]= | -14 -12 -10 -8 2 2 2 6 8 10 14 16 18 20 q + q - q + q - -- + -- + q - q + q - 2 q + q - q + q + q 4 2 q q |
The invariant attains 2163 values on the 2226 knots and links known to KnotTheory
:
In[5]:= |
all = Join[AllKnots[], AllLinks[]]; |
In[6]:= |
Length /@ {Union[A2Invariant[#][q]& /@ all], all} |
Out[6]= | {2163, 2226} |
[Khovanov] ^ M. Khovanov, link homology I, arXiv:math.QA/0304375.
[Kuperberg] ^ G. Kuperberg, Spiders for rank 2 Lie algebras, Comm. Math. Phys. 180 (1996) 109-151, arXiv:q-alg/9712003.