T(21,2): Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
Line 5: | Line 5: | ||
<span id="top"></span> |
<span id="top"></span> |
||
{{Knot Navigation Links| |
{{Knot Navigation Links|ext=jpg}} |
||
{| align=left |
{| align=left |
||
|- valign=top |
|- valign=top |
||
|[[Image: |
|[[Image:{{PAGENAME}}.jpg]] |
||
|Visit [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-12,13,-14,15,-16,17,-18,19,-20,21,-1,2,-3,4,-5,6,-7,8,-9,10,-11,12,-13,14,-15,16,-17,18,-19,20,-21,1,-2,3,-4,5,-6,7,-8,9,-10,11/goTop.html |
|Visit [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-12,13,-14,15,-16,17,-18,19,-20,21,-1,2,-3,4,-5,6,-7,8,-9,10,-11,12,-13,14,-15,16,-17,18,-19,20,-21,1,-2,3,-4,5,-6,7,-8,9,-10,11/goTop.html {{PAGENAME}}'s page] at [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/html/start.html Knotilus]! |
||
Visit [http://www.math.toronto.edu/~drorbn/KAtlas/TorusKnots/21.2.html |
Visit [http://www.math.toronto.edu/~drorbn/KAtlas/TorusKnots/21.2.html {{PAGENAME}}'s page] at the original [http://www.math.toronto.edu/~drorbn/KAtlas/index.html Knot Atlas]! |
||
{{: |
{{:{{PAGENAME}} Quick Notes}} |
||
|} |
|} |
||
<br style="clear:both" /> |
<br style="clear:both" /> |
||
{{: |
{{:{{PAGENAME}} Further Notes and Views}} |
||
{{Knot Presentations}} |
|||
===Knot presentations=== |
===Knot presentations=== |
||
Line 28: | Line 30: | ||
|- |
|- |
||
|'''[[Gauss Codes|Gauss code]]''' |
|'''[[Gauss Codes|Gauss code]]''' |
||
|style="padding-left: 1em;" | {-12, |
|style="padding-left: 1em;" | <math>\{-12,13,-14,15,-16,17,-18,19,-20,21,-1,2,-3,4,-5,6,-7,8,-9,10,-11,12,-13,14,-15,16,-17,18,-19,20,-21,1,-2,3,-4,5,-6,7,-8,9,-10,11\}</math> |
||
|- |
|- |
||
|'''[[DT (Dowker-Thistlethwaite) Codes|Dowker-Thistlethwaite code]]''' |
|'''[[DT (Dowker-Thistlethwaite) Codes|Dowker-Thistlethwaite code]]''' |
||
Line 34: | Line 36: | ||
|} |
|} |
||
{{Polynomial Invariants |
{{Polynomial Invariants}} |
||
{{Vassiliev Invariants}} |
|||
===[[Finite Type (Vassiliev) Invariants|Vassiliev invariants]]=== |
|||
{| style="margin-left: 1em;" |
|||
|- |
|||
|'''V<sub>2</sub> and V<sub>3</sub>''' |
|||
|style="padding-left: 1em;" | {0, 385} |
|||
|} |
|||
===[[Khovanov Homology]]=== |
===[[Khovanov Homology]]=== |
||
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math> |
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
||
<center><table border=1> |
<center><table border=1> |
||
<tr align=center> |
<tr align=center> |
||
<td width=7.69231%><table cellpadding=0 cellspacing=0> |
<td width=7.69231%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
<tr><td>\</td><td> </td><td>r</td></tr> |
||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=3.84615%>0</td ><td width=3.84615%>1</td ><td width=3.84615%>2</td ><td width=3.84615%>3</td ><td width=3.84615%>4</td ><td width=3.84615%>5</td ><td width=3.84615%>6</td ><td width=3.84615%>7</td ><td width=3.84615%>8</td ><td width=3.84615%>9</td ><td width=3.84615%>10</td ><td width=3.84615%>11</td ><td width=3.84615%>12</td ><td width=3.84615%>13</td ><td width=3.84615%>14</td ><td width=3.84615%>15</td ><td width=3.84615%>16</td ><td width=3.84615%>17</td ><td width=3.84615%>18</td ><td width=3.84615%>19</td ><td width=3.84615%>20</td ><td width=3.84615%>21</td ><td width=7.69231%>χ</td></tr> |
<td width=3.84615%>0</td ><td width=3.84615%>1</td ><td width=3.84615%>2</td ><td width=3.84615%>3</td ><td width=3.84615%>4</td ><td width=3.84615%>5</td ><td width=3.84615%>6</td ><td width=3.84615%>7</td ><td width=3.84615%>8</td ><td width=3.84615%>9</td ><td width=3.84615%>10</td ><td width=3.84615%>11</td ><td width=3.84615%>12</td ><td width=3.84615%>13</td ><td width=3.84615%>14</td ><td width=3.84615%>15</td ><td width=3.84615%>16</td ><td width=3.84615%>17</td ><td width=3.84615%>18</td ><td width=3.84615%>19</td ><td width=3.84615%>20</td ><td width=3.84615%>21</td ><td width=7.69231%>χ</td></tr> |
||
<tr align=center><td>63</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
<tr align=center><td>63</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
||
<tr align=center><td>61</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td>0</td></tr> |
<tr align=center><td>61</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td>0</td></tr> |
||
Line 87: | Line 83: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[TorusKnot[21, 2]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[TorusKnot[21, 2]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>21</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>21</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[TorusKnot[21, 2]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[TorusKnot[21, 2]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[11, 33, 12, 32], X[33, 13, 34, 12], X[13, 35, 14, 34], |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[11, 33, 12, 32], X[33, 13, 34, 12], X[13, 35, 14, 34], |
||
X[35, 15, 36, 14], X[15, 37, 16, 36], X[37, 17, 38, 16], |
X[35, 15, 36, 14], X[15, 37, 16, 36], X[37, 17, 38, 16], |
||
Line 104: | Line 100: | ||
X[31, 11, 32, 10]]</nowiki></pre></td></tr> |
X[31, 11, 32, 10]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[TorusKnot[21, 2]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[TorusKnot[21, 2]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-12, 13, -14, 15, -16, 17, -18, 19, -20, 21, -1, 2, -3, 4, |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-12, 13, -14, 15, -16, 17, -18, 19, -20, 21, -1, 2, -3, 4, |
||
-5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 16, -17, 18, -19, 20, |
-5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 16, -17, 18, -19, 20, |
||
-21, 1, -2, 3, -4, 5, -6, 7, -8, 9, -10, 11]</nowiki></pre></td></tr> |
-21, 1, -2, 3, -4, 5, -6, 7, -8, 9, -10, 11]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[TorusKnot[21, 2]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[TorusKnot[21, 2]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[2, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[2, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[TorusKnot[21, 2]][t]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[TorusKnot[21, 2]][t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -10 -9 -8 -7 -6 -5 -4 -3 -2 1 2 |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -10 -9 -8 -7 -6 -5 -4 -3 -2 1 2 |
||
1 + t - t + t - t + t - t + t - t + t - - - t + t - |
1 + t - t + t - t + t - t + t - t + t - - - t + t - |
||
t |
t |
||
Line 119: | Line 115: | ||
3 4 5 6 7 8 9 10 |
3 4 5 6 7 8 9 10 |
||
t + t - t + t - t + t - t + t</nowiki></pre></td></tr> |
t + t - t + t - t + t - t + t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[TorusKnot[21, 2]][z]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[TorusKnot[21, 2]][z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8 10 12 |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8 10 12 |
||
1 + 55 z + 495 z + 1716 z + 3003 z + 3003 z + 1820 z + |
1 + 55 z + 495 z + 1716 z + 3003 z + 3003 z + 1820 z + |
||
14 16 18 20 |
14 16 18 20 |
||
680 z + 153 z + 19 z + z</nowiki></pre></td></tr> |
680 z + 153 z + 19 z + z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[TorusKnot[21, 2]], KnotSignature[TorusKnot[21, 2]]}</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[TorusKnot[21, 2]], KnotSignature[TorusKnot[21, 2]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{21, 20}</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{21, 20}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[TorusKnot[21, 2]][q]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[TorusKnot[21, 2]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 10 12 13 14 15 16 17 18 19 20 21 22 |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 10 12 13 14 15 16 17 18 19 20 21 22 |
||
q + q - q + q - q + q - q + q - q + q - q + q - |
q + q - q + q - q + q - q + q - q + q - q + q - |
||
23 24 25 26 27 28 29 30 31 |
23 24 25 26 27 28 29 30 31 |
||
q + q - q + q - q + q - q + q - q</nowiki></pre></td></tr> |
q + q - q + q - q + q - q + q - q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[TorusKnot[21, 2]][q]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[TorusKnot[21, 2]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>NotAvailable</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>NotAvailable</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[TorusKnot[21, 2]][a, z]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[TorusKnot[21, 2]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>NotAvailable</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>NotAvailable</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][TorusKnot[21, 2]], Vassiliev[3][TorusKnot[21, 2]]}</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][TorusKnot[21, 2]], Vassiliev[3][TorusKnot[21, 2]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 385}</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 385}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[TorusKnot[21, 2]][q, t]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[TorusKnot[21, 2]][q, t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 19 21 23 2 27 3 27 4 31 5 31 6 35 7 |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 19 21 23 2 27 3 27 4 31 5 31 6 35 7 |
||
q + q + q t + q t + q t + q t + q t + q t + |
q + q + q t + q t + q t + q t + q t + q t + |
||
Revision as of 20:24, 27 August 2005
|
|
Visit T(21,2)'s page at Knotilus!
Visit T(21,2)'s page at the original Knot Atlas! |
T(21,2) Further Notes and Views
Knot presentations
Planar diagram presentation | X11,33,12,32 X33,13,34,12 X13,35,14,34 X35,15,36,14 X15,37,16,36 X37,17,38,16 X17,39,18,38 X39,19,40,18 X19,41,20,40 X41,21,42,20 X21,1,22,42 X1,23,2,22 X23,3,24,2 X3,25,4,24 X25,5,26,4 X5,27,6,26 X27,7,28,6 X7,29,8,28 X29,9,30,8 X9,31,10,30 X31,11,32,10 |
Gauss code | -12, 13, -14, 15, -16, 17, -18, 19, -20, 21, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 16, -17, 18, -19, 20, -21, 1, -2, 3, -4, 5, -6, 7, -8, 9, -10, 11 |
Dowker-Thistlethwaite code | 22 24 26 28 30 32 34 36 38 40 42 2 4 6 8 10 12 14 16 18 20 |
Conway Notation | Data:T(21,2)/Conway Notation |
Knot presentations
Planar diagram presentation | X11,33,12,32 X33,13,34,12 X13,35,14,34 X35,15,36,14 X15,37,16,36 X37,17,38,16 X17,39,18,38 X39,19,40,18 X19,41,20,40 X41,21,42,20 X21,1,22,42 X1,23,2,22 X23,3,24,2 X3,25,4,24 X25,5,26,4 X5,27,6,26 X27,7,28,6 X7,29,8,28 X29,9,30,8 X9,31,10,30 X31,11,32,10 |
Gauss code | |
Dowker-Thistlethwaite code | 22 24 26 28 30 32 34 36 38 40 42 2 4 6 8 10 12 14 16 18 20 |
Polynomial invariants
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["T(21,2)"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 21, 20 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Vassiliev invariants
V2 and V3: | (55, 385) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 20 is the signature of T(21,2). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | χ | |||||||||
63 | 1 | -1 | ||||||||||||||||||||||||||||||
61 | 0 | |||||||||||||||||||||||||||||||
59 | 1 | 1 | 0 | |||||||||||||||||||||||||||||
57 | 0 | |||||||||||||||||||||||||||||||
55 | 1 | 1 | 0 | |||||||||||||||||||||||||||||
53 | 0 | |||||||||||||||||||||||||||||||
51 | 1 | 1 | 0 | |||||||||||||||||||||||||||||
49 | 0 | |||||||||||||||||||||||||||||||
47 | 1 | 1 | 0 | |||||||||||||||||||||||||||||
45 | 0 | |||||||||||||||||||||||||||||||
43 | 1 | 1 | 0 | |||||||||||||||||||||||||||||
41 | 0 | |||||||||||||||||||||||||||||||
39 | 1 | 1 | 0 | |||||||||||||||||||||||||||||
37 | 0 | |||||||||||||||||||||||||||||||
35 | 1 | 1 | 0 | |||||||||||||||||||||||||||||
33 | 0 | |||||||||||||||||||||||||||||||
31 | 1 | 1 | 0 | |||||||||||||||||||||||||||||
29 | 0 | |||||||||||||||||||||||||||||||
27 | 1 | 1 | 0 | |||||||||||||||||||||||||||||
25 | 0 | |||||||||||||||||||||||||||||||
23 | 1 | 1 | ||||||||||||||||||||||||||||||
21 | 1 | 1 | ||||||||||||||||||||||||||||||
19 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[TorusKnot[21, 2]] |
Out[2]= | 21 |
In[3]:= | PD[TorusKnot[21, 2]] |
Out[3]= | PD[X[11, 33, 12, 32], X[33, 13, 34, 12], X[13, 35, 14, 34],X[35, 15, 36, 14], X[15, 37, 16, 36], X[37, 17, 38, 16], X[17, 39, 18, 38], X[39, 19, 40, 18], X[19, 41, 20, 40], X[41, 21, 42, 20], X[21, 1, 22, 42], X[1, 23, 2, 22], X[23, 3, 24, 2], X[3, 25, 4, 24], X[25, 5, 26, 4], X[5, 27, 6, 26], X[27, 7, 28, 6], X[7, 29, 8, 28], X[29, 9, 30, 8], X[9, 31, 10, 30],X[31, 11, 32, 10]] |
In[4]:= | GaussCode[TorusKnot[21, 2]] |
Out[4]= | GaussCode[-12, 13, -14, 15, -16, 17, -18, 19, -20, 21, -1, 2, -3, 4,-5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 16, -17, 18, -19, 20,-21, 1, -2, 3, -4, 5, -6, 7, -8, 9, -10, 11] |
In[5]:= | BR[TorusKnot[21, 2]] |
Out[5]= | BR[2, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}] |
In[6]:= | alex = Alexander[TorusKnot[21, 2]][t] |
Out[6]= | -10 -9 -8 -7 -6 -5 -4 -3 -2 1 2 |
In[7]:= | Conway[TorusKnot[21, 2]][z] |
Out[7]= | 2 4 6 8 10 12 |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[TorusKnot[21, 2]], KnotSignature[TorusKnot[21, 2]]} |
Out[9]= | {21, 20} |
In[10]:= | J=Jones[TorusKnot[21, 2]][q] |
Out[10]= | 10 12 13 14 15 16 17 18 19 20 21 22 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[TorusKnot[21, 2]][q] |
Out[12]= | NotAvailable |
In[13]:= | Kauffman[TorusKnot[21, 2]][a, z] |
Out[13]= | NotAvailable |
In[14]:= | {Vassiliev[2][TorusKnot[21, 2]], Vassiliev[3][TorusKnot[21, 2]]} |
Out[14]= | {0, 385} |
In[15]:= | Kh[TorusKnot[21, 2]][q, t] |
Out[15]= | 19 21 23 2 27 3 27 4 31 5 31 6 35 7 |