T(7,4)
|
|
|
|
See other torus knots |
| Edit T(7,4) Quick Notes
|
Edit T(7,4) Further Notes and Views
Knot presentations
| Planar diagram presentation | X9,41,10,40 X20,42,21,41 X31,1,32,42 X21,11,22,10 X32,12,33,11 X1,13,2,12 X33,23,34,22 X2,24,3,23 X13,25,14,24 X3,35,4,34 X14,36,15,35 X25,37,26,36 X15,5,16,4 X26,6,27,5 X37,7,38,6 X27,17,28,16 X38,18,39,17 X7,19,8,18 X39,29,40,28 X8,30,9,29 X19,31,20,30 |
| Gauss code | -6, -8, -10, 13, 14, 15, -18, -20, -1, 4, 5, 6, -9, -11, -13, 16, 17, 18, -21, -2, -4, 7, 8, 9, -12, -14, -16, 19, 20, 21, -3, -5, -7, 10, 11, 12, -15, -17, -19, 1, 2, 3 |
| Dowker-Thistlethwaite code | 12 34 -26 18 40 -32 24 4 -38 30 10 -2 36 16 -8 42 22 -14 6 28 -20 |
| Braid presentation |
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ t^9-t^8+t^5-t^4+t^2-1+ t^{-2} - t^{-4} + t^{-5} - t^{-8} + t^{-9} }[/math] |
| Conway polynomial | [math]\displaystyle{ z^{18}+17 z^{16}+119 z^{14}+442 z^{12}+936 z^{10}+1131 z^8+741 z^6+235 z^4+30 z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 7, 14 } |
| Jones polynomial | [math]\displaystyle{ -q^{18}-q^{16}+q^{15}-q^{14}+q^{13}+q^{11}+q^9 }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ z^{18} a^{-18} +18 z^{16} a^{-18} -z^{16} a^{-20} +136 z^{14} a^{-18} -17 z^{14} a^{-20} +561 z^{12} a^{-18} -120 z^{12} a^{-20} +z^{12} a^{-22} +1378 z^{10} a^{-18} -455 z^{10} a^{-20} +13 z^{10} a^{-22} +2067 z^8 a^{-18} -1002 z^8 a^{-20} +66 z^8 a^{-22} +1873 z^6 a^{-18} -1296 z^6 a^{-20} +165 z^6 a^{-22} -z^6 a^{-24} +981 z^4 a^{-18} -951 z^4 a^{-20} +211 z^4 a^{-22} -6 z^4 a^{-24} +270 z^2 a^{-18} -360 z^2 a^{-20} +130 z^2 a^{-22} -10 z^2 a^{-24} +30 a^{-18} -54 a^{-20} +30 a^{-22} -5 a^{-24} }[/math] |
| Kauffman polynomial (db, data sources) | Data:T(7,4)/Kauffman Polynomial |
| The A2 invariant | Data:T(7,4)/QuantumInvariant/A2/1,0 |
| The G2 invariant | Data:T(7,4)/QuantumInvariant/G2/1,0 |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["T(7,4)"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ t^9-t^8+t^5-t^4+t^2-1+ t^{-2} - t^{-4} + t^{-5} - t^{-8} + t^{-9} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ z^{18}+17 z^{16}+119 z^{14}+442 z^{12}+936 z^{10}+1131 z^8+741 z^6+235 z^4+30 z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 7, 14 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ -q^{18}-q^{16}+q^{15}-q^{14}+q^{13}+q^{11}+q^9 }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ z^{18} a^{-18} +18 z^{16} a^{-18} -z^{16} a^{-20} +136 z^{14} a^{-18} -17 z^{14} a^{-20} +561 z^{12} a^{-18} -120 z^{12} a^{-20} +z^{12} a^{-22} +1378 z^{10} a^{-18} -455 z^{10} a^{-20} +13 z^{10} a^{-22} +2067 z^8 a^{-18} -1002 z^8 a^{-20} +66 z^8 a^{-22} +1873 z^6 a^{-18} -1296 z^6 a^{-20} +165 z^6 a^{-22} -z^6 a^{-24} +981 z^4 a^{-18} -951 z^4 a^{-20} +211 z^4 a^{-22} -6 z^4 a^{-24} +270 z^2 a^{-18} -360 z^2 a^{-20} +130 z^2 a^{-22} -10 z^2 a^{-24} +30 a^{-18} -54 a^{-20} +30 a^{-22} -5 a^{-24} }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Data:T(7,4)/Kauffman Polynomial |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["T(7,4)"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ t^9-t^8+t^5-t^4+t^2-1+ t^{-2} - t^{-4} + t^{-5} - t^{-8} + t^{-9} }[/math], [math]\displaystyle{ -q^{18}-q^{16}+q^{15}-q^{14}+q^{13}+q^{11}+q^9 }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (30, 140) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]14 is the signature of T(7,4). Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Torus Knot Page master template (intermediate). See/edit the Torus Knot_Splice_Base (expert). Back to the top. |
|


