T(10,3)
|
|
|
|
See other torus knots |
| Edit T(10,3) Quick Notes
|
Edit T(10,3) Further Notes and Views
Knot presentations
| Planar diagram presentation | X34,8,35,7 X21,9,22,8 X22,36,23,35 X9,37,10,36 X10,24,11,23 X37,25,38,24 X38,12,39,11 X25,13,26,12 X26,40,27,39 X13,1,14,40 X14,28,15,27 X1,29,2,28 X2,16,3,15 X29,17,30,16 X30,4,31,3 X17,5,18,4 X18,32,19,31 X5,33,6,32 X6,20,7,19 X33,21,34,20 |
| Gauss code | -12, -13, 15, 16, -18, -19, 1, 2, -4, -5, 7, 8, -10, -11, 13, 14, -16, -17, 19, 20, -2, -3, 5, 6, -8, -9, 11, 12, -14, -15, 17, 18, -20, -1, 3, 4, -6, -7, 9, 10 |
| Dowker-Thistlethwaite code | 28 -30 32 -34 36 -38 40 -2 4 -6 8 -10 12 -14 16 -18 20 -22 24 -26 |
| Braid presentation |
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ t^9-t^8+t^6-t^5+t^3-t^2+1- t^{-2} + t^{-3} - t^{-5} + t^{-6} - t^{-8} + t^{-9} }[/math] |
| Conway polynomial | [math]\displaystyle{ z^{18}+17 z^{16}+119 z^{14}+443 z^{12}+946 z^{10}+1166 z^8+792 z^6+264 z^4+33 z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 3, 14 } |
| Jones polynomial | [math]\displaystyle{ -q^{20}+q^{11}+q^9 }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ z^{18} a^{-18} +18 z^{16} a^{-18} -z^{16} a^{-20} +136 z^{14} a^{-18} -17 z^{14} a^{-20} +561 z^{12} a^{-18} -119 z^{12} a^{-20} +z^{12} a^{-22} +1377 z^{10} a^{-18} -443 z^{10} a^{-20} +12 z^{10} a^{-22} +2057 z^8 a^{-18} -946 z^8 a^{-20} +55 z^8 a^{-22} +1837 z^6 a^{-18} -1166 z^6 a^{-20} +121 z^6 a^{-22} +924 z^4 a^{-18} -792 z^4 a^{-20} +132 z^4 a^{-22} +231 z^2 a^{-18} -264 z^2 a^{-20} +66 z^2 a^{-22} +22 a^{-18} -33 a^{-20} +12 a^{-22} }[/math] |
| Kauffman polynomial (db, data sources) | Data:T(10,3)/Kauffman Polynomial |
| The A2 invariant | Data:T(10,3)/QuantumInvariant/A2/1,0 |
| The G2 invariant | Data:T(10,3)/QuantumInvariant/G2/1,0 |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["T(10,3)"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ t^9-t^8+t^6-t^5+t^3-t^2+1- t^{-2} + t^{-3} - t^{-5} + t^{-6} - t^{-8} + t^{-9} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ z^{18}+17 z^{16}+119 z^{14}+443 z^{12}+946 z^{10}+1166 z^8+792 z^6+264 z^4+33 z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 3, 14 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ -q^{20}+q^{11}+q^9 }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ z^{18} a^{-18} +18 z^{16} a^{-18} -z^{16} a^{-20} +136 z^{14} a^{-18} -17 z^{14} a^{-20} +561 z^{12} a^{-18} -119 z^{12} a^{-20} +z^{12} a^{-22} +1377 z^{10} a^{-18} -443 z^{10} a^{-20} +12 z^{10} a^{-22} +2057 z^8 a^{-18} -946 z^8 a^{-20} +55 z^8 a^{-22} +1837 z^6 a^{-18} -1166 z^6 a^{-20} +121 z^6 a^{-22} +924 z^4 a^{-18} -792 z^4 a^{-20} +132 z^4 a^{-22} +231 z^2 a^{-18} -264 z^2 a^{-20} +66 z^2 a^{-22} +22 a^{-18} -33 a^{-20} +12 a^{-22} }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Data:T(10,3)/Kauffman Polynomial |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["T(10,3)"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ t^9-t^8+t^6-t^5+t^3-t^2+1- t^{-2} + t^{-3} - t^{-5} + t^{-6} - t^{-8} + t^{-9} }[/math], [math]\displaystyle{ -q^{20}+q^{11}+q^9 }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (33, 165) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]14 is the signature of T(10,3). Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Torus Knot Page master template (intermediate). See/edit the Torus Knot_Splice_Base (expert). Back to the top. |
|


