T(10,3)
From Knot Atlas
Jump to navigationJump to search
|
|
![]() |
See other torus knots |
Edit T(10,3) Quick Notes
|
Edit T(10,3) Further Notes and Views
Knot presentations
Planar diagram presentation | X34,8,35,7 X21,9,22,8 X22,36,23,35 X9,37,10,36 X10,24,11,23 X37,25,38,24 X38,12,39,11 X25,13,26,12 X26,40,27,39 X13,1,14,40 X14,28,15,27 X1,29,2,28 X2,16,3,15 X29,17,30,16 X30,4,31,3 X17,5,18,4 X18,32,19,31 X5,33,6,32 X6,20,7,19 X33,21,34,20 |
Gauss code | -12, -13, 15, 16, -18, -19, 1, 2, -4, -5, 7, 8, -10, -11, 13, 14, -16, -17, 19, 20, -2, -3, 5, 6, -8, -9, 11, 12, -14, -15, 17, 18, -20, -1, 3, 4, -6, -7, 9, 10 |
Dowker-Thistlethwaite code | 28 -30 32 -34 36 -38 40 -2 4 -6 8 -10 12 -14 16 -18 20 -22 24 -26 |
Braid presentation |
|
Polynomial invariants
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
Vassiliev invariants
V2 and V3: | (33, 165) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 14 is the signature of T(10,3). Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Torus Knot Page master template (intermediate). See/edit the Torus Knot_Splice_Base (expert). Back to the top. |
|