9 23: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! -->
<!-- This page was generated from the splice template [[Rolfsen_Splice_Base]]. Please do not edit!
<!-- --> <!--
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
-->
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- <math>\text{Null}</math> -->
<!-- <math>\text{Null}</math> -->
{{Rolfsen Knot Page|
{{Rolfsen Knot Page|
n = 9 |
n = 9 |
Line 40: Line 43:
coloured_jones_3 = <math> q^{-6} -2 q^{-7} + q^{-8} +2 q^{-9} +2 q^{-10} -8 q^{-11} + q^{-12} +12 q^{-13} +3 q^{-14} -26 q^{-15} +2 q^{-16} +37 q^{-17} +7 q^{-18} -69 q^{-19} -3 q^{-20} +89 q^{-21} +23 q^{-22} -132 q^{-23} -32 q^{-24} +155 q^{-25} +62 q^{-26} -188 q^{-27} -80 q^{-28} +196 q^{-29} +110 q^{-30} -205 q^{-31} -126 q^{-32} +197 q^{-33} +139 q^{-34} -177 q^{-35} -151 q^{-36} +157 q^{-37} +148 q^{-38} -122 q^{-39} -151 q^{-40} +95 q^{-41} +137 q^{-42} -57 q^{-43} -125 q^{-44} +29 q^{-45} +103 q^{-46} -4 q^{-47} -79 q^{-48} -10 q^{-49} +52 q^{-50} +17 q^{-51} -30 q^{-52} -17 q^{-53} +15 q^{-54} +11 q^{-55} -5 q^{-56} -5 q^{-57} +3 q^{-59} - q^{-60} </math> |
coloured_jones_3 = <math> q^{-6} -2 q^{-7} + q^{-8} +2 q^{-9} +2 q^{-10} -8 q^{-11} + q^{-12} +12 q^{-13} +3 q^{-14} -26 q^{-15} +2 q^{-16} +37 q^{-17} +7 q^{-18} -69 q^{-19} -3 q^{-20} +89 q^{-21} +23 q^{-22} -132 q^{-23} -32 q^{-24} +155 q^{-25} +62 q^{-26} -188 q^{-27} -80 q^{-28} +196 q^{-29} +110 q^{-30} -205 q^{-31} -126 q^{-32} +197 q^{-33} +139 q^{-34} -177 q^{-35} -151 q^{-36} +157 q^{-37} +148 q^{-38} -122 q^{-39} -151 q^{-40} +95 q^{-41} +137 q^{-42} -57 q^{-43} -125 q^{-44} +29 q^{-45} +103 q^{-46} -4 q^{-47} -79 q^{-48} -10 q^{-49} +52 q^{-50} +17 q^{-51} -30 q^{-52} -17 q^{-53} +15 q^{-54} +11 q^{-55} -5 q^{-56} -5 q^{-57} +3 q^{-59} - q^{-60} </math> |
coloured_jones_4 = <math> q^{-8} -2 q^{-9} + q^{-10} +2 q^{-11} -2 q^{-12} +4 q^{-13} -9 q^{-14} +4 q^{-15} +10 q^{-16} -9 q^{-17} +10 q^{-18} -28 q^{-19} +15 q^{-20} +34 q^{-21} -27 q^{-22} +6 q^{-23} -72 q^{-24} +51 q^{-25} +103 q^{-26} -52 q^{-27} -33 q^{-28} -184 q^{-29} +108 q^{-30} +264 q^{-31} -33 q^{-32} -112 q^{-33} -415 q^{-34} +129 q^{-35} +512 q^{-36} +94 q^{-37} -167 q^{-38} -743 q^{-39} +50 q^{-40} +745 q^{-41} +308 q^{-42} -126 q^{-43} -1041 q^{-44} -112 q^{-45} +851 q^{-46} +508 q^{-47} +6 q^{-48} -1198 q^{-49} -276 q^{-50} +815 q^{-51} +613 q^{-52} +160 q^{-53} -1184 q^{-54} -388 q^{-55} +666 q^{-56} +622 q^{-57} +307 q^{-58} -1032 q^{-59} -455 q^{-60} +442 q^{-61} +559 q^{-62} +433 q^{-63} -779 q^{-64} -469 q^{-65} +176 q^{-66} +421 q^{-67} +508 q^{-68} -465 q^{-69} -399 q^{-70} -53 q^{-71} +222 q^{-72} +472 q^{-73} -174 q^{-74} -245 q^{-75} -160 q^{-76} +35 q^{-77} +322 q^{-78} -5 q^{-79} -81 q^{-80} -130 q^{-81} -58 q^{-82} +145 q^{-83} +33 q^{-84} +8 q^{-85} -54 q^{-86} -52 q^{-87} +39 q^{-88} +12 q^{-89} +17 q^{-90} -8 q^{-91} -18 q^{-92} +5 q^{-93} +5 q^{-95} -3 q^{-97} + q^{-98} </math> |
coloured_jones_4 = <math> q^{-8} -2 q^{-9} + q^{-10} +2 q^{-11} -2 q^{-12} +4 q^{-13} -9 q^{-14} +4 q^{-15} +10 q^{-16} -9 q^{-17} +10 q^{-18} -28 q^{-19} +15 q^{-20} +34 q^{-21} -27 q^{-22} +6 q^{-23} -72 q^{-24} +51 q^{-25} +103 q^{-26} -52 q^{-27} -33 q^{-28} -184 q^{-29} +108 q^{-30} +264 q^{-31} -33 q^{-32} -112 q^{-33} -415 q^{-34} +129 q^{-35} +512 q^{-36} +94 q^{-37} -167 q^{-38} -743 q^{-39} +50 q^{-40} +745 q^{-41} +308 q^{-42} -126 q^{-43} -1041 q^{-44} -112 q^{-45} +851 q^{-46} +508 q^{-47} +6 q^{-48} -1198 q^{-49} -276 q^{-50} +815 q^{-51} +613 q^{-52} +160 q^{-53} -1184 q^{-54} -388 q^{-55} +666 q^{-56} +622 q^{-57} +307 q^{-58} -1032 q^{-59} -455 q^{-60} +442 q^{-61} +559 q^{-62} +433 q^{-63} -779 q^{-64} -469 q^{-65} +176 q^{-66} +421 q^{-67} +508 q^{-68} -465 q^{-69} -399 q^{-70} -53 q^{-71} +222 q^{-72} +472 q^{-73} -174 q^{-74} -245 q^{-75} -160 q^{-76} +35 q^{-77} +322 q^{-78} -5 q^{-79} -81 q^{-80} -130 q^{-81} -58 q^{-82} +145 q^{-83} +33 q^{-84} +8 q^{-85} -54 q^{-86} -52 q^{-87} +39 q^{-88} +12 q^{-89} +17 q^{-90} -8 q^{-91} -18 q^{-92} +5 q^{-93} +5 q^{-95} -3 q^{-97} + q^{-98} </math> |
coloured_jones_5 = |
coloured_jones_5 = <math>\textrm{NotAvailable}(q)</math> |
coloured_jones_6 = |
coloured_jones_6 = <math>\textrm{NotAvailable}(q)</math> |
coloured_jones_7 = |
coloured_jones_7 = <math>\textrm{NotAvailable}(q)</math> |
computer_talk =
computer_talk =
<table>
<table>
Line 49: Line 52:
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
</tr>
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr>
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 23]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 23]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[5, 12, 6, 13], X[7, 16, 8, 17],
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 10, 4, 11], X[5, 12, 6, 13], X[7, 16, 8, 17],
Line 67: Line 70:
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 23]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_23_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[9, 23]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:9_23_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[9, 23]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> (#[Knot[9, 23]]&) /@ {
SymmetryType, UnknottingNumber, ThreeGenus,
BridgeIndex, SuperBridgeIndex, NakanishiIndex
}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 2, 2, {4, 7}, 1}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 2, 2, {4, 7}, 1}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 23]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[9, 23]][t]</nowiki></pre></td></tr>

Revision as of 17:40, 31 August 2005

9 22.gif

9_22

9 24.gif

9_24

9 23.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 9 23's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 23 at Knotilus!


Symmetrical decorative knot
With crossings on 3x3 grid
Depiction with two axes of symmetry
Mongolian ornament (two crossings are unnecessary)
Mongolian ornament, sum of two 9.23
Logo of the ICMC-USP, Brazil
Other depicture with central symmetry by Alain Esculier

Knot presentations

Planar diagram presentation X1425 X3,10,4,11 X5,12,6,13 X7,16,8,17 X13,18,14,1 X17,14,18,15 X15,6,16,7 X11,8,12,9 X9,2,10,3
Gauss code -1, 9, -2, 1, -3, 7, -4, 8, -9, 2, -8, 3, -5, 6, -7, 4, -6, 5
Dowker-Thistlethwaite code 4 10 12 16 2 8 18 6 14
Conway Notation [22122]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gif

Length is 11, width is 4,

Braid index is 4

9 23 ML.gif 9 23 AP.gif
[{11, 4}, {3, 9}, {8, 10}, {9, 11}, {10, 5}, {4, 6}, {5, 2}, {1, 3}, {2, 7}, {6, 8}, {7, 1}]

[edit Notes on presentations of 9 23]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 2
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-14][3]
Hyperbolic Volume 10.6113
A-Polynomial See Data:9 23/A-polynomial

[edit Notes for 9 23's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -4

[edit Notes for 9 23's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 45, -4 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (5, -11)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -4 is the signature of 9 23. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-10χ
-3         11
-5        21-1
-7       3  3
-9      32  -1
-11     53   2
-13    33    0
-15   35     -2
-17  23      1
-19 13       -2
-21 2        2
-231         -1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials