|
|
Line 1: |
Line 1: |
|
|
<!-- WARNING! WARNING! WARNING! |
|
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
|
<!-- This page was generated from the splice template [[Rolfsen_Splice_Base]]. Please do not edit! |
|
<!-- --> <!-- |
|
|
|
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|
--> |
|
|
|
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|
|
<!-- <math>\text{Null}</math> --> |
|
|
<!-- <math>\text{Null}</math> --> |
|
{{Rolfsen Knot Page| |
|
{{Rolfsen Knot Page| |
|
n = 10 | |
|
n = 10 | |
Line 41: |
Line 44: |
|
coloured_jones_3 = <math>q^{54}-4 q^{53}+4 q^{52}+4 q^{51}-7 q^{50}-11 q^{49}+19 q^{48}+29 q^{47}-53 q^{46}-55 q^{45}+98 q^{44}+119 q^{43}-163 q^{42}-228 q^{41}+230 q^{40}+390 q^{39}-284 q^{38}-587 q^{37}+289 q^{36}+815 q^{35}-255 q^{34}-1017 q^{33}+162 q^{32}+1187 q^{31}-44 q^{30}-1285 q^{29}-101 q^{28}+1320 q^{27}+247 q^{26}-1290 q^{25}-383 q^{24}+1197 q^{23}+510 q^{22}-1065 q^{21}-598 q^{20}+871 q^{19}+676 q^{18}-680 q^{17}-675 q^{16}+446 q^{15}+651 q^{14}-254 q^{13}-550 q^{12}+78 q^{11}+435 q^{10}+23 q^9-289 q^8-84 q^7+178 q^6+81 q^5-83 q^4-65 q^3+34 q^2+37 q-9-18 q^{-1} +3 q^{-2} +5 q^{-3} + q^{-4} -3 q^{-5} + q^{-6} </math> | |
|
coloured_jones_3 = <math>q^{54}-4 q^{53}+4 q^{52}+4 q^{51}-7 q^{50}-11 q^{49}+19 q^{48}+29 q^{47}-53 q^{46}-55 q^{45}+98 q^{44}+119 q^{43}-163 q^{42}-228 q^{41}+230 q^{40}+390 q^{39}-284 q^{38}-587 q^{37}+289 q^{36}+815 q^{35}-255 q^{34}-1017 q^{33}+162 q^{32}+1187 q^{31}-44 q^{30}-1285 q^{29}-101 q^{28}+1320 q^{27}+247 q^{26}-1290 q^{25}-383 q^{24}+1197 q^{23}+510 q^{22}-1065 q^{21}-598 q^{20}+871 q^{19}+676 q^{18}-680 q^{17}-675 q^{16}+446 q^{15}+651 q^{14}-254 q^{13}-550 q^{12}+78 q^{11}+435 q^{10}+23 q^9-289 q^8-84 q^7+178 q^6+81 q^5-83 q^4-65 q^3+34 q^2+37 q-9-18 q^{-1} +3 q^{-2} +5 q^{-3} + q^{-4} -3 q^{-5} + q^{-6} </math> | |
|
coloured_jones_4 = <math>q^{88}-4 q^{87}+4 q^{86}+4 q^{85}-11 q^{84}+9 q^{83}-12 q^{82}+23 q^{81}+8 q^{80}-72 q^{79}+38 q^{78}+2 q^{77}+122 q^{76}+6 q^{75}-342 q^{74}+8 q^{73}+139 q^{72}+583 q^{71}+119 q^{70}-1113 q^{69}-506 q^{68}+286 q^{67}+1884 q^{66}+969 q^{65}-2318 q^{64}-2175 q^{63}-322 q^{62}+3950 q^{61}+3315 q^{60}-2978 q^{59}-4828 q^{58}-2531 q^{57}+5569 q^{56}+6790 q^{55}-2052 q^{54}-7049 q^{53}-5888 q^{52}+5562 q^{51}+9769 q^{50}+180 q^{49}-7594 q^{48}-8868 q^{47}+4062 q^{46}+11021 q^{45}+2543 q^{44}-6525 q^{43}-10458 q^{42}+1939 q^{41}+10549 q^{40}+4362 q^{39}-4508 q^{38}-10679 q^{37}-320 q^{36}+8837 q^{35}+5589 q^{34}-1940 q^{33}-9709 q^{32}-2514 q^{31}+6095 q^{30}+6014 q^{29}+862 q^{28}-7464 q^{27}-4042 q^{26}+2702 q^{25}+5105 q^{24}+3016 q^{23}-4213 q^{22}-4038 q^{21}-240 q^{20}+2925 q^{19}+3490 q^{18}-1173 q^{17}-2522 q^{16}-1515 q^{15}+692 q^{14}+2348 q^{13}+370 q^{12}-773 q^{11}-1170 q^{10}-369 q^9+903 q^8+460 q^7+73 q^6-411 q^5-361 q^4+164 q^3+141 q^2+137 q-53-120 q^{-1} +11 q^{-2} +6 q^{-3} +39 q^{-4} +3 q^{-5} -21 q^{-6} +3 q^{-7} -3 q^{-8} +5 q^{-9} + q^{-10} -3 q^{-11} + q^{-12} </math> | |
|
coloured_jones_4 = <math>q^{88}-4 q^{87}+4 q^{86}+4 q^{85}-11 q^{84}+9 q^{83}-12 q^{82}+23 q^{81}+8 q^{80}-72 q^{79}+38 q^{78}+2 q^{77}+122 q^{76}+6 q^{75}-342 q^{74}+8 q^{73}+139 q^{72}+583 q^{71}+119 q^{70}-1113 q^{69}-506 q^{68}+286 q^{67}+1884 q^{66}+969 q^{65}-2318 q^{64}-2175 q^{63}-322 q^{62}+3950 q^{61}+3315 q^{60}-2978 q^{59}-4828 q^{58}-2531 q^{57}+5569 q^{56}+6790 q^{55}-2052 q^{54}-7049 q^{53}-5888 q^{52}+5562 q^{51}+9769 q^{50}+180 q^{49}-7594 q^{48}-8868 q^{47}+4062 q^{46}+11021 q^{45}+2543 q^{44}-6525 q^{43}-10458 q^{42}+1939 q^{41}+10549 q^{40}+4362 q^{39}-4508 q^{38}-10679 q^{37}-320 q^{36}+8837 q^{35}+5589 q^{34}-1940 q^{33}-9709 q^{32}-2514 q^{31}+6095 q^{30}+6014 q^{29}+862 q^{28}-7464 q^{27}-4042 q^{26}+2702 q^{25}+5105 q^{24}+3016 q^{23}-4213 q^{22}-4038 q^{21}-240 q^{20}+2925 q^{19}+3490 q^{18}-1173 q^{17}-2522 q^{16}-1515 q^{15}+692 q^{14}+2348 q^{13}+370 q^{12}-773 q^{11}-1170 q^{10}-369 q^9+903 q^8+460 q^7+73 q^6-411 q^5-361 q^4+164 q^3+141 q^2+137 q-53-120 q^{-1} +11 q^{-2} +6 q^{-3} +39 q^{-4} +3 q^{-5} -21 q^{-6} +3 q^{-7} -3 q^{-8} +5 q^{-9} + q^{-10} -3 q^{-11} + q^{-12} </math> | |
|
coloured_jones_5 = | |
|
coloured_jones_5 = <math>\textrm{NotAvailable}(q)</math> | |
|
coloured_jones_6 = | |
|
coloured_jones_6 = <math>\textrm{NotAvailable}(q)</math> | |
|
coloured_jones_7 = | |
|
coloured_jones_7 = <math>\textrm{NotAvailable}(q)</math> | |
|
computer_talk = |
|
computer_talk = |
|
<table> |
|
<table> |
Line 50: |
Line 53: |
|
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|
</tr> |
|
</tr> |
|
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr> |
|
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 92]]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 92]]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[14, 6, 15, 5], X[20, 16, 1, 15], |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[14, 6, 15, 5], X[20, 16, 1, 15], |
Line 70: |
Line 73: |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 92]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_92_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 92]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_92_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 92]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> (#[Knot[10, 92]]&) /@ { |
|
|
SymmetryType, UnknottingNumber, ThreeGenus, |
|
|
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|
|
}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Chiral, 2, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Chiral, 2, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 92]][t]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 92]][t]</nowiki></pre></td></tr> |