10 1: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! -->
<!-- This page was generated from the splice template [[Rolfsen_Splice_Base]]. Please do not edit!
<!-- --> <!--
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
-->
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- <math>\text{Null}</math> -->
<!-- <math>\text{Null}</math> -->
{{Rolfsen Knot Page|
{{Rolfsen Knot Page|
n = 10 |
n = 10 |
Line 42: Line 45:
coloured_jones_2 = <math>q^6-q^5+2 q^3-2 q^2+3-3 q^{-1} - q^{-2} +3 q^{-3} -2 q^{-4} - q^{-5} +3 q^{-6} -2 q^{-7} +3 q^{-9} -3 q^{-10} +3 q^{-12} -3 q^{-13} +3 q^{-15} -3 q^{-16} +3 q^{-18} -2 q^{-19} - q^{-20} +2 q^{-21} - q^{-22} - q^{-23} + q^{-24} </math> |
coloured_jones_2 = <math>q^6-q^5+2 q^3-2 q^2+3-3 q^{-1} - q^{-2} +3 q^{-3} -2 q^{-4} - q^{-5} +3 q^{-6} -2 q^{-7} +3 q^{-9} -3 q^{-10} +3 q^{-12} -3 q^{-13} +3 q^{-15} -3 q^{-16} +3 q^{-18} -2 q^{-19} - q^{-20} +2 q^{-21} - q^{-22} - q^{-23} + q^{-24} </math> |
coloured_jones_3 = <math>q^{12}-q^{11}+2 q^8-2 q^7+2 q^4-3 q^3+2 q+2-5 q^{-1} +4 q^{-3} +2 q^{-4} -6 q^{-5} - q^{-6} +6 q^{-7} +2 q^{-8} -6 q^{-9} -2 q^{-10} +6 q^{-11} +2 q^{-12} -5 q^{-13} -2 q^{-14} +5 q^{-15} + q^{-16} -4 q^{-17} -2 q^{-18} +4 q^{-19} + q^{-20} -3 q^{-21} -2 q^{-22} +3 q^{-23} +2 q^{-24} -2 q^{-25} -2 q^{-26} +2 q^{-27} +2 q^{-28} -2 q^{-29} -2 q^{-30} +2 q^{-31} +2 q^{-32} -2 q^{-33} -2 q^{-34} +2 q^{-35} +2 q^{-36} -2 q^{-37} -2 q^{-38} + q^{-39} +3 q^{-40} - q^{-41} -2 q^{-42} +2 q^{-44} - q^{-46} - q^{-47} + q^{-48} </math> |
coloured_jones_3 = <math>q^{12}-q^{11}+2 q^8-2 q^7+2 q^4-3 q^3+2 q+2-5 q^{-1} +4 q^{-3} +2 q^{-4} -6 q^{-5} - q^{-6} +6 q^{-7} +2 q^{-8} -6 q^{-9} -2 q^{-10} +6 q^{-11} +2 q^{-12} -5 q^{-13} -2 q^{-14} +5 q^{-15} + q^{-16} -4 q^{-17} -2 q^{-18} +4 q^{-19} + q^{-20} -3 q^{-21} -2 q^{-22} +3 q^{-23} +2 q^{-24} -2 q^{-25} -2 q^{-26} +2 q^{-27} +2 q^{-28} -2 q^{-29} -2 q^{-30} +2 q^{-31} +2 q^{-32} -2 q^{-33} -2 q^{-34} +2 q^{-35} +2 q^{-36} -2 q^{-37} -2 q^{-38} + q^{-39} +3 q^{-40} - q^{-41} -2 q^{-42} +2 q^{-44} - q^{-46} - q^{-47} + q^{-48} </math> |
coloured_jones_4 = |
coloured_jones_4 = <math>\textrm{NotAvailable}(q)</math> |
coloured_jones_5 = |
coloured_jones_5 = <math>\textrm{NotAvailable}(q)</math> |
coloured_jones_6 = |
coloured_jones_6 = <math>\textrm{NotAvailable}(q)</math> |
coloured_jones_7 = |
coloured_jones_7 = <math>\textrm{NotAvailable}(q)</math> |
computer_talk =
computer_talk =
<table>
<table>
Line 52: Line 55:
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
</tr>
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr>
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 1]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 1]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[11, 14, 12, 15], X[3, 13, 4, 12], X[13, 3, 14, 2],
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[11, 14, 12, 15], X[3, 13, 4, 12], X[13, 3, 14, 2],
Line 72: Line 75:
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>6</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>6</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 1]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_1_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 1]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_1_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 1]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> (#[Knot[10, 1]]&) /@ {
SymmetryType, UnknottingNumber, ThreeGenus,
BridgeIndex, SuperBridgeIndex, NakanishiIndex
}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 1, 1, 2, NotAvailable, 1}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 1, 1, 2, NotAvailable, 1}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 1]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 1]][t]</nowiki></pre></td></tr>

Revision as of 17:48, 31 August 2005

9 49.gif

9_49

10 2.gif

10_2

10 1.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 10 1's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10 1 at Knotilus!


Knot presentations

Planar diagram presentation X1425 X11,14,12,15 X3,13,4,12 X13,3,14,2 X5,20,6,1 X7,18,8,19 X9,16,10,17 X15,10,16,11 X17,8,18,9 X19,6,20,7
Gauss code -1, 4, -3, 1, -5, 10, -6, 9, -7, 8, -2, 3, -4, 2, -8, 7, -9, 6, -10, 5
Dowker-Thistlethwaite code 4 12 20 18 16 14 2 10 8 6
Conway Notation [82]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif

Length is 13, width is 6,

Braid index is 6

10 1 ML.gif 10 1 AP.gif
[{12, 9}, {8, 10}, {9, 7}, {6, 8}, {7, 5}, {4, 6}, {5, 3}, {2, 4}, {3, 1}, {11, 2}, {10, 12}, {1, 11}]

[edit Notes on presentations of 10 1]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 1
Bridge index 2
Super bridge index Missing
Nakanishi index 1
Maximal Thurston-Bennequin number [-9][-3]
Hyperbolic Volume 3.5262
A-Polynomial See Data:10 1/A-polynomial

[edit Notes for 10 1's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for 10 1's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 17, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant Data:10 1/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {8_3,}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (-4, 6)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 10 1. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-8-7-6-5-4-3-2-1012χ
5          11
3           0
1        21 1
-1       11  0
-3      11   0
-5     11    0
-7    11     0
-9   11      0
-11   1       -1
-13 11        0
-15           0
-171          1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials