|
|
Line 1: |
Line 1: |
|
|
<!-- WARNING! WARNING! WARNING! |
|
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
|
<!-- This page was generated from the splice template [[Rolfsen_Splice_Base]]. Please do not edit! |
|
<!-- --> <!-- |
|
|
|
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|
--> |
|
|
|
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|
|
<!-- <math>\text{Null}</math> --> |
|
|
<!-- <math>\text{Null}</math> --> |
|
{{Rolfsen Knot Page| |
|
{{Rolfsen Knot Page| |
|
n = 10 | |
|
n = 10 | |
Line 41: |
Line 44: |
|
coloured_jones_3 = <math>q^6-q^5+2 q^2-3 q+2 q^{-1} +4 q^{-2} -8 q^{-3} -2 q^{-4} +7 q^{-5} +12 q^{-6} -15 q^{-7} -12 q^{-8} +10 q^{-9} +24 q^{-10} -12 q^{-11} -26 q^{-12} +2 q^{-13} +34 q^{-14} + q^{-15} -31 q^{-16} -13 q^{-17} +32 q^{-18} +19 q^{-19} -27 q^{-20} -26 q^{-21} +23 q^{-22} +32 q^{-23} -20 q^{-24} -35 q^{-25} +15 q^{-26} +39 q^{-27} -13 q^{-28} -38 q^{-29} +8 q^{-30} +36 q^{-31} -5 q^{-32} -28 q^{-33} - q^{-34} +23 q^{-35} - q^{-36} -11 q^{-37} -2 q^{-38} +6 q^{-39} - q^{-40} - q^{-41} +3 q^{-42} -4 q^{-44} - q^{-45} +5 q^{-46} + q^{-47} -3 q^{-48} -3 q^{-49} +3 q^{-50} + q^{-51} -2 q^{-53} + q^{-54} </math> | |
|
coloured_jones_3 = <math>q^6-q^5+2 q^2-3 q+2 q^{-1} +4 q^{-2} -8 q^{-3} -2 q^{-4} +7 q^{-5} +12 q^{-6} -15 q^{-7} -12 q^{-8} +10 q^{-9} +24 q^{-10} -12 q^{-11} -26 q^{-12} +2 q^{-13} +34 q^{-14} + q^{-15} -31 q^{-16} -13 q^{-17} +32 q^{-18} +19 q^{-19} -27 q^{-20} -26 q^{-21} +23 q^{-22} +32 q^{-23} -20 q^{-24} -35 q^{-25} +15 q^{-26} +39 q^{-27} -13 q^{-28} -38 q^{-29} +8 q^{-30} +36 q^{-31} -5 q^{-32} -28 q^{-33} - q^{-34} +23 q^{-35} - q^{-36} -11 q^{-37} -2 q^{-38} +6 q^{-39} - q^{-40} - q^{-41} +3 q^{-42} -4 q^{-44} - q^{-45} +5 q^{-46} + q^{-47} -3 q^{-48} -3 q^{-49} +3 q^{-50} + q^{-51} -2 q^{-53} + q^{-54} </math> | |
|
coloured_jones_4 = <math>q^{12}-q^{11}-q^8+3 q^7-3 q^6+q^5+2 q^4-4 q^3+5 q^2-8 q+3+10 q^{-1} -6 q^{-2} +7 q^{-3} -22 q^{-4} - q^{-5} +23 q^{-6} + q^{-7} +20 q^{-8} -44 q^{-9} -19 q^{-10} +27 q^{-11} +10 q^{-12} +53 q^{-13} -52 q^{-14} -39 q^{-15} +11 q^{-16} -4 q^{-17} +89 q^{-18} -37 q^{-19} -34 q^{-20} -3 q^{-21} -46 q^{-22} +93 q^{-23} -19 q^{-24} +5 q^{-25} +9 q^{-26} -95 q^{-27} +65 q^{-28} -21 q^{-29} +53 q^{-30} +46 q^{-31} -126 q^{-32} +26 q^{-33} -41 q^{-34} +91 q^{-35} +86 q^{-36} -142 q^{-37} -4 q^{-38} -59 q^{-39} +113 q^{-40} +113 q^{-41} -148 q^{-42} -24 q^{-43} -72 q^{-44} +122 q^{-45} +129 q^{-46} -136 q^{-47} -36 q^{-48} -88 q^{-49} +107 q^{-50} +138 q^{-51} -95 q^{-52} -33 q^{-53} -104 q^{-54} +63 q^{-55} +122 q^{-56} -40 q^{-57} -2 q^{-58} -100 q^{-59} +7 q^{-60} +78 q^{-61} -2 q^{-62} +32 q^{-63} -69 q^{-64} -21 q^{-65} +30 q^{-66} + q^{-67} +45 q^{-68} -31 q^{-69} -19 q^{-70} +3 q^{-71} -8 q^{-72} +34 q^{-73} -9 q^{-74} -7 q^{-75} -3 q^{-76} -11 q^{-77} +17 q^{-78} - q^{-79} - q^{-81} -7 q^{-82} +5 q^{-83} + q^{-85} -2 q^{-87} + q^{-88} </math> | |
|
coloured_jones_4 = <math>q^{12}-q^{11}-q^8+3 q^7-3 q^6+q^5+2 q^4-4 q^3+5 q^2-8 q+3+10 q^{-1} -6 q^{-2} +7 q^{-3} -22 q^{-4} - q^{-5} +23 q^{-6} + q^{-7} +20 q^{-8} -44 q^{-9} -19 q^{-10} +27 q^{-11} +10 q^{-12} +53 q^{-13} -52 q^{-14} -39 q^{-15} +11 q^{-16} -4 q^{-17} +89 q^{-18} -37 q^{-19} -34 q^{-20} -3 q^{-21} -46 q^{-22} +93 q^{-23} -19 q^{-24} +5 q^{-25} +9 q^{-26} -95 q^{-27} +65 q^{-28} -21 q^{-29} +53 q^{-30} +46 q^{-31} -126 q^{-32} +26 q^{-33} -41 q^{-34} +91 q^{-35} +86 q^{-36} -142 q^{-37} -4 q^{-38} -59 q^{-39} +113 q^{-40} +113 q^{-41} -148 q^{-42} -24 q^{-43} -72 q^{-44} +122 q^{-45} +129 q^{-46} -136 q^{-47} -36 q^{-48} -88 q^{-49} +107 q^{-50} +138 q^{-51} -95 q^{-52} -33 q^{-53} -104 q^{-54} +63 q^{-55} +122 q^{-56} -40 q^{-57} -2 q^{-58} -100 q^{-59} +7 q^{-60} +78 q^{-61} -2 q^{-62} +32 q^{-63} -69 q^{-64} -21 q^{-65} +30 q^{-66} + q^{-67} +45 q^{-68} -31 q^{-69} -19 q^{-70} +3 q^{-71} -8 q^{-72} +34 q^{-73} -9 q^{-74} -7 q^{-75} -3 q^{-76} -11 q^{-77} +17 q^{-78} - q^{-79} - q^{-81} -7 q^{-82} +5 q^{-83} + q^{-85} -2 q^{-87} + q^{-88} </math> | |
|
coloured_jones_5 = | |
|
coloured_jones_5 = <math>\textrm{NotAvailable}(q)</math> | |
|
coloured_jones_6 = | |
|
coloured_jones_6 = <math>\textrm{NotAvailable}(q)</math> | |
|
coloured_jones_7 = | |
|
coloured_jones_7 = <math>\textrm{NotAvailable}(q)</math> | |
|
computer_talk = |
|
computer_talk = |
|
<table> |
|
<table> |
Line 50: |
Line 53: |
|
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|
</tr> |
|
</tr> |
|
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr> |
|
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 6]]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 6]]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[11, 14, 12, 15], X[3, 13, 4, 12], X[13, 3, 14, 2], |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[11, 14, 12, 15], X[3, 13, 4, 12], X[13, 3, 14, 2], |
Line 70: |
Line 73: |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 6]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_6_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 6]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_6_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 6]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> (#[Knot[10, 6]]&) /@ { |
|
|
SymmetryType, UnknottingNumber, ThreeGenus, |
|
|
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|
|
}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 3, 3, 2, NotAvailable, 1}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 3, 3, 2, NotAvailable, 1}</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 6]][t]</nowiki></pre></td></tr> |
|
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 6]][t]</nowiki></pre></td></tr> |