10 5

From Knot Atlas
Jump to navigationJump to search

10 4.gif

10_4

10 6.gif

10_6

10 5.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 10 5's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10 5 at Knotilus!


Knot presentations

Planar diagram presentation X1425 X3,12,4,13 X13,1,14,20 X5,15,6,14 X7,17,8,16 X9,19,10,18 X15,7,16,6 X17,9,18,8 X19,11,20,10 X11,2,12,3
Gauss code -1, 10, -2, 1, -4, 7, -5, 8, -6, 9, -10, 2, -3, 4, -7, 5, -8, 6, -9, 3
Dowker-Thistlethwaite code 4 12 14 16 18 2 20 6 8 10
Conway Notation [6112]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gif

Length is 10, width is 3,

Braid index is 3

10 5 ML.gif 10 5 AP.gif
[{12, 8}, {1, 10}, {9, 11}, {10, 12}, {11, 7}, {8, 6}, {7, 5}, {6, 4}, {5, 3}, {4, 2}, {3, 1}, {2, 9}]

[edit Notes on presentations of 10 5]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 4
Bridge index 2
Super bridge index Missing
Nakanishi index 1
Maximal Thurston-Bennequin number [0][-12]
Hyperbolic Volume 7.37394
A-Polynomial See Data:10 5/A-polynomial

[edit Notes for 10 5's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 4

[edit Notes for 10 5's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 33, 4 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (4, 7)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 4 is the signature of 10 5. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-3-2-101234567χ
19          1-1
17         1 1
15        21 -1
13       21  1
11      32   -1
9     22    0
7    23     1
5   22      0
3  13       2
1 11        0
-1 1         1
-31          -1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials