10 5

From Knot Atlas
Jump to navigationJump to search

10 4.gif

10_4

10 6.gif

10_6

10 5.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 10 5's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10 5 at Knotilus!


Knot presentations

Planar diagram presentation X1425 X3,12,4,13 X13,1,14,20 X5,15,6,14 X7,17,8,16 X9,19,10,18 X15,7,16,6 X17,9,18,8 X19,11,20,10 X11,2,12,3
Gauss code -1, 10, -2, 1, -4, 7, -5, 8, -6, 9, -10, 2, -3, 4, -7, 5, -8, 6, -9, 3
Dowker-Thistlethwaite code 4 12 14 16 18 2 20 6 8 10
Conway Notation [6112]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gif

Length is 10, width is 3,

Braid index is 3

10 5 ML.gif 10 5 AP.gif
[{12, 8}, {1, 10}, {9, 11}, {10, 12}, {11, 7}, {8, 6}, {7, 5}, {6, 4}, {5, 3}, {4, 2}, {3, 1}, {2, 9}]

[edit Notes on presentations of 10 5]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 4
Bridge index 2
Super bridge index Missing
Nakanishi index 1
Maximal Thurston-Bennequin number [0][-12]
Hyperbolic Volume 7.37394
A-Polynomial See Data:10 5/A-polynomial

[edit Notes for 10 5's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus [math]\displaystyle{ 2 }[/math]
Topological 4 genus [math]\displaystyle{ 2 }[/math]
Concordance genus [math]\displaystyle{ 4 }[/math]
Rasmussen s-Invariant 4

[edit Notes for 10 5's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ t^4-3 t^3+5 t^2-5 t+5-5 t^{-1} +5 t^{-2} -3 t^{-3} + t^{-4} }[/math]
Conway polynomial [math]\displaystyle{ z^8+5 z^6+7 z^4+4 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 33, 4 }
Jones polynomial [math]\displaystyle{ -q^9+2 q^8-3 q^7+4 q^6-5 q^5+5 q^4-4 q^3+4 q^2-2 q+2- q^{-1} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ z^8 a^{-4} -z^6 a^{-2} +7 z^6 a^{-4} -z^6 a^{-6} -5 z^4 a^{-2} +17 z^4 a^{-4} -5 z^4 a^{-6} -6 z^2 a^{-2} +17 z^2 a^{-4} -7 z^2 a^{-6} - a^{-2} +5 a^{-4} -3 a^{-6} }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^9 a^{-3} +z^9 a^{-5} +2 z^8 a^{-2} +4 z^8 a^{-4} +2 z^8 a^{-6} +z^7 a^{-1} -3 z^7 a^{-3} -2 z^7 a^{-5} +2 z^7 a^{-7} -11 z^6 a^{-2} -20 z^6 a^{-4} -7 z^6 a^{-6} +2 z^6 a^{-8} -5 z^5 a^{-1} -2 z^5 a^{-3} -3 z^5 a^{-5} -4 z^5 a^{-7} +2 z^5 a^{-9} +18 z^4 a^{-2} +32 z^4 a^{-4} +10 z^4 a^{-6} -2 z^4 a^{-8} +2 z^4 a^{-10} +6 z^3 a^{-1} +7 z^3 a^{-3} +6 z^3 a^{-5} +3 z^3 a^{-7} -z^3 a^{-9} +z^3 a^{-11} -10 z^2 a^{-2} -22 z^2 a^{-4} -9 z^2 a^{-6} +z^2 a^{-8} -2 z^2 a^{-10} -z a^{-1} -2 z a^{-3} -3 z a^{-5} -z a^{-7} -z a^{-11} + a^{-2} +5 a^{-4} +3 a^{-6} }[/math]
The A2 invariant [math]\displaystyle{ -q^2+ q^{-4} +2 q^{-6} + q^{-8} +2 q^{-10} - q^{-12} + q^{-14} - q^{-22} - q^{-26} }[/math]
The G2 invariant [math]\displaystyle{ q^{12}-q^{10}+2 q^8-3 q^6+q^4-2 q^2-1+5 q^{-2} -8 q^{-4} +8 q^{-6} -7 q^{-8} +2 q^{-10} +3 q^{-12} -9 q^{-14} +10 q^{-16} -9 q^{-18} +5 q^{-20} +2 q^{-22} -4 q^{-24} +7 q^{-26} -3 q^{-28} +2 q^{-30} +4 q^{-32} -2 q^{-34} +2 q^{-36} +2 q^{-38} -2 q^{-40} +8 q^{-42} -4 q^{-44} +6 q^{-46} -2 q^{-48} - q^{-50} +7 q^{-52} -10 q^{-54} +9 q^{-56} -6 q^{-58} +2 q^{-60} +2 q^{-62} -6 q^{-64} +6 q^{-66} -5 q^{-68} +2 q^{-70} -3 q^{-74} + q^{-76} + q^{-78} -2 q^{-80} + q^{-82} - q^{-86} +2 q^{-88} -2 q^{-90} + q^{-92} + q^{-96} - q^{-98} - q^{-100} - q^{-104} +2 q^{-106} -4 q^{-108} +4 q^{-110} -3 q^{-112} - q^{-114} +2 q^{-116} -5 q^{-118} +5 q^{-120} -5 q^{-122} +3 q^{-124} - q^{-126} -2 q^{-128} +4 q^{-130} -4 q^{-132} +4 q^{-134} -2 q^{-136} + q^{-138} -2 q^{-142} +2 q^{-144} - q^{-146} + q^{-148} }[/math]

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (4, 7)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 16 }[/math] [math]\displaystyle{ 56 }[/math] [math]\displaystyle{ 128 }[/math] [math]\displaystyle{ \frac{728}{3} }[/math] [math]\displaystyle{ \frac{16}{3} }[/math] [math]\displaystyle{ 896 }[/math] [math]\displaystyle{ \frac{3824}{3} }[/math] [math]\displaystyle{ \frac{608}{3} }[/math] [math]\displaystyle{ 24 }[/math] [math]\displaystyle{ \frac{2048}{3} }[/math] [math]\displaystyle{ 1568 }[/math] [math]\displaystyle{ \frac{11648}{3} }[/math] [math]\displaystyle{ \frac{256}{3} }[/math] [math]\displaystyle{ \frac{104222}{15} }[/math] [math]\displaystyle{ \frac{18512}{15} }[/math] [math]\displaystyle{ \frac{38288}{45} }[/math] [math]\displaystyle{ \frac{130}{9} }[/math] [math]\displaystyle{ -\frac{658}{15} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]4 is the signature of 10 5. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-3-2-101234567χ
19          1-1
17         1 1
15        21 -1
13       21  1
11      32   -1
9     22    0
7    23     1
5   22      0
3  13       2
1 11        0
-1 1         1
-31          -1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=3 }[/math] [math]\displaystyle{ i=5 }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=7 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

The Coloured Jones Polynomials