10 4

From Knot Atlas
Jump to navigationJump to search

10 3.gif

10_3

10 5.gif

10_5

10 4.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 10 4's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10 4 at Knotilus!


Knot presentations

Planar diagram presentation X6271 X16,12,17,11 X12,3,13,4 X2,15,3,16 X14,5,15,6 X20,8,1,7 X18,10,19,9 X4,13,5,14 X10,18,11,17 X8,20,9,19
Gauss code 1, -4, 3, -8, 5, -1, 6, -10, 7, -9, 2, -3, 8, -5, 4, -2, 9, -7, 10, -6
Dowker-Thistlethwaite code 6 12 14 20 18 16 4 2 10 8
Conway Notation [613]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif

Length is 12, width is 5,

Braid index is 5

10 4 ML.gif 10 4 AP.gif
[{2, 12}, {1, 3}, {4, 2}, {3, 5}, {6, 4}, {5, 7}, {11, 6}, {12, 8}, {7, 9}, {8, 10}, {9, 11}, {10, 1}]

[edit Notes on presentations of 10 4]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 2
Bridge index 2
Super bridge index Missing
Nakanishi index 1
Maximal Thurston-Bennequin number [-7][-5]
Hyperbolic Volume 5.81713
A-Polynomial See Data:10 4/A-polynomial

[edit Notes for 10 4's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus [math]\displaystyle{ 1 }[/math]
Topological 4 genus [math]\displaystyle{ 1 }[/math]
Concordance genus [math]\displaystyle{ 2 }[/math]
Rasmussen s-Invariant 2

[edit Notes for 10 4's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ -3 t^2+7 t-7+7 t^{-1} -3 t^{-2} }[/math]
Conway polynomial [math]\displaystyle{ -3 z^4-5 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 27, -2 }
Jones polynomial [math]\displaystyle{ q^5-q^4+2 q^3-3 q^2+3 q-4+4 q^{-1} -3 q^{-2} +3 q^{-3} -2 q^{-4} + q^{-5} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ z^2 a^4+a^4-z^4 a^2-2 z^2 a^2-z^4-2 z^2-z^4 a^{-2} -3 z^2 a^{-2} -2 a^{-2} +z^2 a^{-4} +2 a^{-4} }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^9 a^{-1} +z^9 a^{-3} +3 z^8 a^{-2} +z^8 a^{-4} +2 z^8+3 a z^7-3 z^7 a^{-1} -6 z^7 a^{-3} +3 a^2 z^6-17 z^6 a^{-2} -7 z^6 a^{-4} -7 z^6+3 a^3 z^5-10 a z^5-2 z^5 a^{-1} +11 z^5 a^{-3} +3 a^4 z^4-6 a^2 z^4+29 z^4 a^{-2} +16 z^4 a^{-4} +4 z^4+2 a^5 z^3-4 a^3 z^3+8 a z^3+7 z^3 a^{-1} -7 z^3 a^{-3} +a^6 z^2-3 a^4 z^2-16 z^2 a^{-2} -13 z^2 a^{-4} +z^2-3 a z-z a^{-1} +2 z a^{-3} +a^4+2 a^{-2} +2 a^{-4} }[/math]
The A2 invariant [math]\displaystyle{ q^{16}+q^{10}+q^6- q^{-2} - q^{-4} - q^{-6} - q^{-8} + q^{-10} + q^{-12} + q^{-14} + q^{-16} }[/math]
The G2 invariant [math]\displaystyle{ q^{86}-q^{84}+q^{82}-q^{80}-q^{74}+3 q^{72}-2 q^{70}+2 q^{68}-q^{66}+q^{62}-2 q^{60}+3 q^{58}-2 q^{56}+2 q^{48}-q^{46}+2 q^{44}-q^{42}+q^{40}+2 q^{38}-q^{36}+q^{34}+q^{32}+q^{30}+q^{26}-q^{24}+q^{22}-q^{20}-q^{14}-q^{10}+2 q^4-4 q^2+2-3 q^{-4} +4 q^{-6} -5 q^{-8} +2 q^{-10} - q^{-12} - q^{-14} +2 q^{-16} -3 q^{-18} +2 q^{-20} -2 q^{-22} - q^{-26} - q^{-28} +2 q^{-36} -2 q^{-38} + q^{-40} + q^{-42} -2 q^{-44} +5 q^{-46} -5 q^{-48} +3 q^{-50} + q^{-52} -2 q^{-54} +5 q^{-56} -4 q^{-58} +3 q^{-60} + q^{-66} -2 q^{-68} +2 q^{-70} + q^{-74} }[/math]

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (-5, -1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ -20 }[/math] [math]\displaystyle{ -8 }[/math] [math]\displaystyle{ 200 }[/math] [math]\displaystyle{ \frac{890}{3} }[/math] [math]\displaystyle{ \frac{382}{3} }[/math] [math]\displaystyle{ 160 }[/math] [math]\displaystyle{ \frac{880}{3} }[/math] [math]\displaystyle{ \frac{64}{3} }[/math] [math]\displaystyle{ 120 }[/math] [math]\displaystyle{ -\frac{4000}{3} }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ -\frac{17800}{3} }[/math] [math]\displaystyle{ -\frac{7640}{3} }[/math] [math]\displaystyle{ -\frac{32095}{6} }[/math] [math]\displaystyle{ 1330 }[/math] [math]\displaystyle{ -\frac{47702}{9} }[/math] [math]\displaystyle{ \frac{11867}{18} }[/math] [math]\displaystyle{ -\frac{7423}{6} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]-2 is the signature of 10 4. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-4-3-2-10123456χ
11          11
9           0
7        21 1
5       1   -1
3      22   0
1     21    -1
-1    22     0
-3   23      1
-5  11       0
-7 12        1
-9 1         -1
-111          1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-3 }[/math] [math]\displaystyle{ i=-1 }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

The Coloured Jones Polynomials