10 7: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! -->
<!-- This page was generated from the splice template [[Rolfsen_Splice_Base]]. Please do not edit!
<!-- --> <!--
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
-->
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- <math>\text{Null}</math> -->
<!-- <math>\text{Null}</math> -->
{{Rolfsen Knot Page|
{{Rolfsen Knot Page|
n = 10 |
n = 10 |
Line 42: Line 45:
coloured_jones_3 = <math>q^9-2 q^8+q^6+4 q^5-4 q^4-4 q^3+2 q^2+8 q-3-6 q^{-1} - q^{-2} +9 q^{-3} -3 q^{-4} - q^{-5} + q^{-6} +2 q^{-7} -13 q^{-8} +8 q^{-9} +16 q^{-10} -4 q^{-11} -33 q^{-12} +9 q^{-13} +37 q^{-14} -50 q^{-16} +50 q^{-18} +8 q^{-19} -49 q^{-20} -16 q^{-21} +48 q^{-22} +21 q^{-23} -40 q^{-24} -32 q^{-25} +35 q^{-26} +37 q^{-27} -23 q^{-28} -46 q^{-29} +15 q^{-30} +47 q^{-31} -2 q^{-32} -48 q^{-33} -5 q^{-34} +40 q^{-35} +14 q^{-36} -33 q^{-37} -17 q^{-38} +23 q^{-39} +16 q^{-40} -13 q^{-41} -14 q^{-42} +8 q^{-43} +9 q^{-44} -3 q^{-45} -6 q^{-46} +2 q^{-47} +2 q^{-48} -2 q^{-50} + q^{-51} </math> |
coloured_jones_3 = <math>q^9-2 q^8+q^6+4 q^5-4 q^4-4 q^3+2 q^2+8 q-3-6 q^{-1} - q^{-2} +9 q^{-3} -3 q^{-4} - q^{-5} + q^{-6} +2 q^{-7} -13 q^{-8} +8 q^{-9} +16 q^{-10} -4 q^{-11} -33 q^{-12} +9 q^{-13} +37 q^{-14} -50 q^{-16} +50 q^{-18} +8 q^{-19} -49 q^{-20} -16 q^{-21} +48 q^{-22} +21 q^{-23} -40 q^{-24} -32 q^{-25} +35 q^{-26} +37 q^{-27} -23 q^{-28} -46 q^{-29} +15 q^{-30} +47 q^{-31} -2 q^{-32} -48 q^{-33} -5 q^{-34} +40 q^{-35} +14 q^{-36} -33 q^{-37} -17 q^{-38} +23 q^{-39} +16 q^{-40} -13 q^{-41} -14 q^{-42} +8 q^{-43} +9 q^{-44} -3 q^{-45} -6 q^{-46} +2 q^{-47} +2 q^{-48} -2 q^{-50} + q^{-51} </math> |
coloured_jones_4 = <math>q^{16}-2 q^{15}+q^{13}+6 q^{11}-8 q^{10}-2 q^9+22 q^6-15 q^5-6 q^4-11 q^3-8 q^2+51 q-11-3 q^{-1} -37 q^{-2} -38 q^{-3} +83 q^{-4} +10 q^{-5} +27 q^{-6} -64 q^{-7} -102 q^{-8} +87 q^{-9} +38 q^{-10} +101 q^{-11} -62 q^{-12} -184 q^{-13} +45 q^{-14} +37 q^{-15} +198 q^{-16} -11 q^{-17} -242 q^{-18} -20 q^{-19} -7 q^{-20} +269 q^{-21} +58 q^{-22} -254 q^{-23} -58 q^{-24} -68 q^{-25} +288 q^{-26} +104 q^{-27} -236 q^{-28} -59 q^{-29} -107 q^{-30} +268 q^{-31} +112 q^{-32} -202 q^{-33} -35 q^{-34} -126 q^{-35} +219 q^{-36} +101 q^{-37} -152 q^{-38} +5 q^{-39} -135 q^{-40} +145 q^{-41} +71 q^{-42} -90 q^{-43} +64 q^{-44} -128 q^{-45} +61 q^{-46} +20 q^{-47} -45 q^{-48} +123 q^{-49} -87 q^{-50} +2 q^{-51} -41 q^{-52} -39 q^{-53} +149 q^{-54} -27 q^{-55} -6 q^{-56} -74 q^{-57} -60 q^{-58} +120 q^{-59} +15 q^{-60} +20 q^{-61} -61 q^{-62} -70 q^{-63} +64 q^{-64} +18 q^{-65} +34 q^{-66} -26 q^{-67} -51 q^{-68} +23 q^{-69} +4 q^{-70} +24 q^{-71} -4 q^{-72} -24 q^{-73} +8 q^{-74} -2 q^{-75} +9 q^{-76} + q^{-77} -8 q^{-78} +3 q^{-79} - q^{-80} +2 q^{-81} -2 q^{-83} + q^{-84} </math> |
coloured_jones_4 = <math>q^{16}-2 q^{15}+q^{13}+6 q^{11}-8 q^{10}-2 q^9+22 q^6-15 q^5-6 q^4-11 q^3-8 q^2+51 q-11-3 q^{-1} -37 q^{-2} -38 q^{-3} +83 q^{-4} +10 q^{-5} +27 q^{-6} -64 q^{-7} -102 q^{-8} +87 q^{-9} +38 q^{-10} +101 q^{-11} -62 q^{-12} -184 q^{-13} +45 q^{-14} +37 q^{-15} +198 q^{-16} -11 q^{-17} -242 q^{-18} -20 q^{-19} -7 q^{-20} +269 q^{-21} +58 q^{-22} -254 q^{-23} -58 q^{-24} -68 q^{-25} +288 q^{-26} +104 q^{-27} -236 q^{-28} -59 q^{-29} -107 q^{-30} +268 q^{-31} +112 q^{-32} -202 q^{-33} -35 q^{-34} -126 q^{-35} +219 q^{-36} +101 q^{-37} -152 q^{-38} +5 q^{-39} -135 q^{-40} +145 q^{-41} +71 q^{-42} -90 q^{-43} +64 q^{-44} -128 q^{-45} +61 q^{-46} +20 q^{-47} -45 q^{-48} +123 q^{-49} -87 q^{-50} +2 q^{-51} -41 q^{-52} -39 q^{-53} +149 q^{-54} -27 q^{-55} -6 q^{-56} -74 q^{-57} -60 q^{-58} +120 q^{-59} +15 q^{-60} +20 q^{-61} -61 q^{-62} -70 q^{-63} +64 q^{-64} +18 q^{-65} +34 q^{-66} -26 q^{-67} -51 q^{-68} +23 q^{-69} +4 q^{-70} +24 q^{-71} -4 q^{-72} -24 q^{-73} +8 q^{-74} -2 q^{-75} +9 q^{-76} + q^{-77} -8 q^{-78} +3 q^{-79} - q^{-80} +2 q^{-81} -2 q^{-83} + q^{-84} </math> |
coloured_jones_5 = |
coloured_jones_5 = <math>\textrm{NotAvailable}(q)</math> |
coloured_jones_6 = |
coloured_jones_6 = <math>\textrm{NotAvailable}(q)</math> |
coloured_jones_7 = |
coloured_jones_7 = <math>\textrm{NotAvailable}(q)</math> |
computer_talk =
computer_talk =
<table>
<table>
Line 51: Line 54:
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
</tr>
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr>
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 7]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 7]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[5, 14, 6, 15], X[3, 13, 4, 12], X[13, 3, 14, 2],
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[5, 14, 6, 15], X[3, 13, 4, 12], X[13, 3, 14, 2],
Line 71: Line 74:
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 7]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_7_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 7]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_7_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 7]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> (#[Knot[10, 7]]&) /@ {
SymmetryType, UnknottingNumber, ThreeGenus,
BridgeIndex, SuperBridgeIndex, NakanishiIndex
}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 1, 2, 2, NotAvailable, 1}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 1, 2, 2, NotAvailable, 1}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 7]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 7]][t]</nowiki></pre></td></tr>

Revision as of 17:49, 31 August 2005

10 6.gif

10_6

10 8.gif

10_8

10 7.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 10 7's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10 7 at Knotilus!


Knot presentations

Planar diagram presentation X1425 X5,14,6,15 X3,13,4,12 X13,3,14,2 X11,20,12,1 X19,6,20,7 X7,18,8,19 X9,16,10,17 X15,10,16,11 X17,8,18,9
Gauss code -1, 4, -3, 1, -2, 6, -7, 10, -8, 9, -5, 3, -4, 2, -9, 8, -10, 7, -6, 5
Dowker-Thistlethwaite code 4 12 14 18 16 20 2 10 8 6
Conway Notation [5212]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif

Length is 12, width is 5,

Braid index is 5

10 7 ML.gif 10 7 AP.gif
[{12, 7}, {1, 10}, {11, 8}, {7, 9}, {10, 12}, {6, 11}, {8, 5}, {4, 6}, {5, 3}, {2, 4}, {3, 1}, {9, 2}]

[edit Notes on presentations of 10 7]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 2
Bridge index 2
Super bridge index Missing
Nakanishi index 1
Maximal Thurston-Bennequin number [-11][-1]
Hyperbolic Volume 9.11591
A-Polynomial See Data:10 7/A-polynomial

[edit Notes for 10 7's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -2

[edit Notes for 10 7's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 43, -2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11a59, K11n3,}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (-1, 3)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 10 7. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-8-7-6-5-4-3-2-1012χ
3          11
1         1 -1
-1        31 2
-3       32  -1
-5      42   2
-7     33    0
-9    34     -1
-11   23      1
-13  13       -2
-15 12        1
-17 1         -1
-191          1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials