9 21: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice |
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
||
<!-- |
<!-- --> |
||
<!-- |
<!-- --> |
||
{{Rolfsen Knot Page| |
{{Rolfsen Knot Page| |
||
n = 9 | |
n = 9 | |
||
Line 46: | Line 46: | ||
coloured_jones_5 = <math>-q^{110}+2 q^{109}-2 q^{107}+q^{106}-2 q^{104}+5 q^{103}+q^{102}-9 q^{101}-q^{100}+5 q^{99}+2 q^{98}+14 q^{97}+2 q^{96}-27 q^{95}-23 q^{94}+5 q^{93}+28 q^{92}+53 q^{91}+24 q^{90}-61 q^{89}-95 q^{88}-51 q^{87}+50 q^{86}+161 q^{85}+138 q^{84}-42 q^{83}-216 q^{82}-245 q^{81}-59 q^{80}+264 q^{79}+409 q^{78}+187 q^{77}-232 q^{76}-552 q^{75}-440 q^{74}+127 q^{73}+692 q^{72}+708 q^{71}+97 q^{70}-726 q^{69}-1031 q^{68}-429 q^{67}+682 q^{66}+1319 q^{65}+830 q^{64}-506 q^{63}-1548 q^{62}-1283 q^{61}+231 q^{60}+1708 q^{59}+1724 q^{58}+100 q^{57}-1758 q^{56}-2131 q^{55}-487 q^{54}+1770 q^{53}+2467 q^{52}+842 q^{51}-1687 q^{50}-2749 q^{49}-1195 q^{48}+1621 q^{47}+2940 q^{46}+1468 q^{45}-1463 q^{44}-3105 q^{43}-1742 q^{42}+1382 q^{41}+3158 q^{40}+1917 q^{39}-1164 q^{38}-3198 q^{37}-2131 q^{36}+1045 q^{35}+3114 q^{34}+2212 q^{33}-739 q^{32}-2992 q^{31}-2341 q^{30}+532 q^{29}+2730 q^{28}+2318 q^{27}-177 q^{26}-2405 q^{25}-2288 q^{24}-77 q^{23}+1974 q^{22}+2098 q^{21}+378 q^{20}-1517 q^{19}-1865 q^{18}-539 q^{17}+1038 q^{16}+1521 q^{15}+659 q^{14}-626 q^{13}-1169 q^{12}-641 q^{11}+294 q^{10}+803 q^9+568 q^8-69 q^7-507 q^6-437 q^5-45 q^4+276 q^3+293 q^2+94 q-127-184 q^{-1} -81 q^{-2} +49 q^{-3} +95 q^{-4} +53 q^{-5} -7 q^{-6} -44 q^{-7} -37 q^{-8} +2 q^{-9} +23 q^{-10} +12 q^{-11} -2 q^{-12} - q^{-13} -10 q^{-14} -4 q^{-15} +11 q^{-16} + q^{-17} -5 q^{-18} + q^{-19} -3 q^{-21} +4 q^{-22} + q^{-23} -3 q^{-24} + q^{-25} </math> | |
coloured_jones_5 = <math>-q^{110}+2 q^{109}-2 q^{107}+q^{106}-2 q^{104}+5 q^{103}+q^{102}-9 q^{101}-q^{100}+5 q^{99}+2 q^{98}+14 q^{97}+2 q^{96}-27 q^{95}-23 q^{94}+5 q^{93}+28 q^{92}+53 q^{91}+24 q^{90}-61 q^{89}-95 q^{88}-51 q^{87}+50 q^{86}+161 q^{85}+138 q^{84}-42 q^{83}-216 q^{82}-245 q^{81}-59 q^{80}+264 q^{79}+409 q^{78}+187 q^{77}-232 q^{76}-552 q^{75}-440 q^{74}+127 q^{73}+692 q^{72}+708 q^{71}+97 q^{70}-726 q^{69}-1031 q^{68}-429 q^{67}+682 q^{66}+1319 q^{65}+830 q^{64}-506 q^{63}-1548 q^{62}-1283 q^{61}+231 q^{60}+1708 q^{59}+1724 q^{58}+100 q^{57}-1758 q^{56}-2131 q^{55}-487 q^{54}+1770 q^{53}+2467 q^{52}+842 q^{51}-1687 q^{50}-2749 q^{49}-1195 q^{48}+1621 q^{47}+2940 q^{46}+1468 q^{45}-1463 q^{44}-3105 q^{43}-1742 q^{42}+1382 q^{41}+3158 q^{40}+1917 q^{39}-1164 q^{38}-3198 q^{37}-2131 q^{36}+1045 q^{35}+3114 q^{34}+2212 q^{33}-739 q^{32}-2992 q^{31}-2341 q^{30}+532 q^{29}+2730 q^{28}+2318 q^{27}-177 q^{26}-2405 q^{25}-2288 q^{24}-77 q^{23}+1974 q^{22}+2098 q^{21}+378 q^{20}-1517 q^{19}-1865 q^{18}-539 q^{17}+1038 q^{16}+1521 q^{15}+659 q^{14}-626 q^{13}-1169 q^{12}-641 q^{11}+294 q^{10}+803 q^9+568 q^8-69 q^7-507 q^6-437 q^5-45 q^4+276 q^3+293 q^2+94 q-127-184 q^{-1} -81 q^{-2} +49 q^{-3} +95 q^{-4} +53 q^{-5} -7 q^{-6} -44 q^{-7} -37 q^{-8} +2 q^{-9} +23 q^{-10} +12 q^{-11} -2 q^{-12} - q^{-13} -10 q^{-14} -4 q^{-15} +11 q^{-16} + q^{-17} -5 q^{-18} + q^{-19} -3 q^{-21} +4 q^{-22} + q^{-23} -3 q^{-24} + q^{-25} </math> | |
||
coloured_jones_6 = <math>q^{153}-2 q^{152}+2 q^{150}-q^{149}-2 q^{147}+6 q^{146}-6 q^{145}-2 q^{144}+11 q^{143}-3 q^{142}-4 q^{141}-13 q^{140}+15 q^{139}-12 q^{138}-2 q^{137}+40 q^{136}+5 q^{135}-13 q^{134}-55 q^{133}+11 q^{132}-40 q^{131}+123 q^{129}+70 q^{128}+10 q^{127}-140 q^{126}-54 q^{125}-175 q^{124}-67 q^{123}+257 q^{122}+283 q^{121}+212 q^{120}-147 q^{119}-148 q^{118}-548 q^{117}-432 q^{116}+213 q^{115}+571 q^{114}+754 q^{113}+268 q^{112}+108 q^{111}-1003 q^{110}-1279 q^{109}-499 q^{108}+387 q^{107}+1340 q^{106}+1291 q^{105}+1343 q^{104}-779 q^{103}-2139 q^{102}-2047 q^{101}-1012 q^{100}+990 q^{99}+2286 q^{98}+3647 q^{97}+947 q^{96}-1858 q^{95}-3616 q^{94}-3609 q^{93}-1140 q^{92}+2000 q^{91}+6025 q^{90}+4038 q^{89}+347 q^{88}-3910 q^{87}-6293 q^{86}-4749 q^{85}-209 q^{84}+7174 q^{83}+7295 q^{82}+4009 q^{81}-2419 q^{80}-7843 q^{79}-8568 q^{78}-3712 q^{77}+6702 q^{76}+9565 q^{75}+7832 q^{74}+172 q^{73}-7986 q^{72}-11495 q^{71}-7246 q^{70}+5260 q^{69}+10601 q^{68}+10808 q^{67}+2762 q^{66}-7292 q^{65}-13269 q^{64}-9958 q^{63}+3692 q^{62}+10823 q^{61}+12730 q^{60}+4755 q^{59}-6367 q^{58}-14165 q^{57}-11759 q^{56}+2300 q^{55}+10589 q^{54}+13842 q^{53}+6259 q^{52}-5291 q^{51}-14366 q^{50}-12922 q^{49}+804 q^{48}+9790 q^{47}+14251 q^{46}+7601 q^{45}-3686 q^{44}-13634 q^{43}-13488 q^{42}-1121 q^{41}+7974 q^{40}+13616 q^{39}+8730 q^{38}-1279 q^{37}-11490 q^{36}-13007 q^{35}-3237 q^{34}+4967 q^{33}+11417 q^{32}+9006 q^{31}+1493 q^{30}-7898 q^{29}-10923 q^{28}-4636 q^{27}+1467 q^{26}+7737 q^{25}+7748 q^{24}+3485 q^{23}-3817 q^{22}-7419 q^{21}-4482 q^{20}-1153 q^{19}+3722 q^{18}+5140 q^{17}+3793 q^{16}-754 q^{15}-3722 q^{14}-2957 q^{13}-2008 q^{12}+860 q^{11}+2376 q^{10}+2690 q^9+525 q^8-1187 q^7-1203 q^6-1489 q^5-297 q^4+600 q^3+1306 q^2+522 q-136-164 q^{-1} -670 q^{-2} -356 q^{-3} -44 q^{-4} +448 q^{-5} +191 q^{-6} +44 q^{-7} +128 q^{-8} -191 q^{-9} -149 q^{-10} -105 q^{-11} +126 q^{-12} +19 q^{-13} +3 q^{-14} +97 q^{-15} -35 q^{-16} -35 q^{-17} -46 q^{-18} +42 q^{-19} -11 q^{-20} -13 q^{-21} +34 q^{-22} -7 q^{-23} -4 q^{-24} -14 q^{-25} +18 q^{-26} -4 q^{-27} -9 q^{-28} +9 q^{-29} -3 q^{-30} -3 q^{-32} +4 q^{-33} + q^{-34} -3 q^{-35} + q^{-36} </math> | |
coloured_jones_6 = <math>q^{153}-2 q^{152}+2 q^{150}-q^{149}-2 q^{147}+6 q^{146}-6 q^{145}-2 q^{144}+11 q^{143}-3 q^{142}-4 q^{141}-13 q^{140}+15 q^{139}-12 q^{138}-2 q^{137}+40 q^{136}+5 q^{135}-13 q^{134}-55 q^{133}+11 q^{132}-40 q^{131}+123 q^{129}+70 q^{128}+10 q^{127}-140 q^{126}-54 q^{125}-175 q^{124}-67 q^{123}+257 q^{122}+283 q^{121}+212 q^{120}-147 q^{119}-148 q^{118}-548 q^{117}-432 q^{116}+213 q^{115}+571 q^{114}+754 q^{113}+268 q^{112}+108 q^{111}-1003 q^{110}-1279 q^{109}-499 q^{108}+387 q^{107}+1340 q^{106}+1291 q^{105}+1343 q^{104}-779 q^{103}-2139 q^{102}-2047 q^{101}-1012 q^{100}+990 q^{99}+2286 q^{98}+3647 q^{97}+947 q^{96}-1858 q^{95}-3616 q^{94}-3609 q^{93}-1140 q^{92}+2000 q^{91}+6025 q^{90}+4038 q^{89}+347 q^{88}-3910 q^{87}-6293 q^{86}-4749 q^{85}-209 q^{84}+7174 q^{83}+7295 q^{82}+4009 q^{81}-2419 q^{80}-7843 q^{79}-8568 q^{78}-3712 q^{77}+6702 q^{76}+9565 q^{75}+7832 q^{74}+172 q^{73}-7986 q^{72}-11495 q^{71}-7246 q^{70}+5260 q^{69}+10601 q^{68}+10808 q^{67}+2762 q^{66}-7292 q^{65}-13269 q^{64}-9958 q^{63}+3692 q^{62}+10823 q^{61}+12730 q^{60}+4755 q^{59}-6367 q^{58}-14165 q^{57}-11759 q^{56}+2300 q^{55}+10589 q^{54}+13842 q^{53}+6259 q^{52}-5291 q^{51}-14366 q^{50}-12922 q^{49}+804 q^{48}+9790 q^{47}+14251 q^{46}+7601 q^{45}-3686 q^{44}-13634 q^{43}-13488 q^{42}-1121 q^{41}+7974 q^{40}+13616 q^{39}+8730 q^{38}-1279 q^{37}-11490 q^{36}-13007 q^{35}-3237 q^{34}+4967 q^{33}+11417 q^{32}+9006 q^{31}+1493 q^{30}-7898 q^{29}-10923 q^{28}-4636 q^{27}+1467 q^{26}+7737 q^{25}+7748 q^{24}+3485 q^{23}-3817 q^{22}-7419 q^{21}-4482 q^{20}-1153 q^{19}+3722 q^{18}+5140 q^{17}+3793 q^{16}-754 q^{15}-3722 q^{14}-2957 q^{13}-2008 q^{12}+860 q^{11}+2376 q^{10}+2690 q^9+525 q^8-1187 q^7-1203 q^6-1489 q^5-297 q^4+600 q^3+1306 q^2+522 q-136-164 q^{-1} -670 q^{-2} -356 q^{-3} -44 q^{-4} +448 q^{-5} +191 q^{-6} +44 q^{-7} +128 q^{-8} -191 q^{-9} -149 q^{-10} -105 q^{-11} +126 q^{-12} +19 q^{-13} +3 q^{-14} +97 q^{-15} -35 q^{-16} -35 q^{-17} -46 q^{-18} +42 q^{-19} -11 q^{-20} -13 q^{-21} +34 q^{-22} -7 q^{-23} -4 q^{-24} -14 q^{-25} +18 q^{-26} -4 q^{-27} -9 q^{-28} +9 q^{-29} -3 q^{-30} -3 q^{-32} +4 q^{-33} + q^{-34} -3 q^{-35} + q^{-36} </math> | |
||
coloured_jones_7 = |
coloured_jones_7 = | |
||
computer_talk = |
computer_talk = |
||
<table> |
<table> |
||
Line 53: | Line 53: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15: |
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[9, 21]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[9, 12, 10, 13], X[3, 11, 4, 10], X[11, 3, 12, 2], |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[9, 21]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[9, 12, 10, 13], X[3, 11, 4, 10], X[11, 3, 12, 2], |
|||
X[13, 1, 14, 18], X[5, 15, 6, 14], X[17, 7, 18, 6], X[7, 17, 8, 16], |
X[13, 1, 14, 18], X[5, 15, 6, 14], X[17, 7, 18, 6], X[7, 17, 8, 16], |
||
X[15, 9, 16, 8]]</nowiki></ |
X[15, 9, 16, 8]]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[9, 21]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 4, -3, 1, -6, 7, -8, 9, -2, 3, -4, 2, -5, 6, -9, 8, -7, 5]</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[9, 21]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[9, 21]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 4, -3, 1, -6, 7, -8, 9, -2, 3, -4, 2, -5, 6, -9, 8, -7, 5]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{5, 10}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[9, 21]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[9, 21]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> (#[Knot[9, 21]]&) /@ { |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 10, 14, 16, 12, 2, 18, 8, 6]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[9, 21]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[5, {1, 1, 2, -1, 2, -3, 2, 4, -3, 4}]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{5, 10}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[9, 21]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>5</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[9, 21]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:9_21_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[9, 21]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
SymmetryType, UnknottingNumber, ThreeGenus, |
||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
||
}</nowiki></ |
}</nowiki></code></td></tr> |
||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 1, 2, 2, {4, 7}, 1}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 1, 2, 2, {4, 7}, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[9, 21]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 11 2 |
|||
-17 - -- + -- + 11 t - 2 t |
-17 - -- + -- + 11 t - 2 t |
||
2 t |
2 t |
||
t</nowiki></ |
t</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[9, 21]][z]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
1 + 3 z - 2 z</nowiki></pre></td></tr> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[9, 21]][z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 21]}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 |
|||
1 + 3 z - 2 z</nowiki></code></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[9, 21]][q]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 1 2 3 4 5 6 7 8 |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 21]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[9, 21]], KnotSignature[Knot[9, 21]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{43, 2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[9, 21]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 1 2 3 4 5 6 7 8 |
|||
-3 + - + 5 q - 6 q + 8 q - 7 q + 6 q - 4 q + 2 q - q |
-3 + - + 5 q - 6 q + 8 q - 7 q + 6 q - 4 q + 2 q - q |
||
q</nowiki></ |
q</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[9, 21], Knot[11, NonAlternating, 129]}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[9, 21], Knot[11, NonAlternating, 129]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[9, 21]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -4 -2 2 4 6 8 12 14 16 20 |
|||
-1 + q - q + 2 q - q + 2 q + q + q - q + 2 q - q + |
-1 + q - q + 2 q - q + 2 q + q + q - q + 2 q - q + |
||
22 24 26 |
22 24 26 |
||
q - q - q</nowiki></ |
q - q - q</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[9, 21]][a, z]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 4 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[9, 21]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 4 |
|||
-8 -6 -2 2 2 z z z |
-8 -6 -2 2 2 z z z |
||
-a + a + a + z + ---- - -- - -- |
-a + a + a + z + ---- - -- - -- |
||
6 4 2 |
6 4 2 |
||
a a a</nowiki></ |
a a a</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[9, 21]][a, z]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 2 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[9, 21]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 2 2 |
|||
-8 -6 -2 2 z 3 z z 2 3 z 5 z 6 z 3 z |
-8 -6 -2 2 z 3 z z 2 3 z 5 z 6 z 3 z |
||
-a - a - a + --- - --- - -- - z + ---- + ---- + ---- + ---- - |
-a - a - a + --- - --- - -- - z + ---- + ---- + ---- + ---- - |
||
Line 129: | Line 215: | ||
---- + ---- + -- + -- |
---- + ---- + -- + -- |
||
5 3 6 4 |
5 3 6 4 |
||
a a a a</nowiki></ |
a a a a</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[9, 21]], Vassiliev[3][Knot[9, 21]]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 6}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[9, 21]], Vassiliev[3][Knot[9, 21]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, 6}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[9, 21]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 1 2 q 3 5 5 2 7 2 |
|||
3 q + 3 q + ----- + --- + - + 4 q t + 2 q t + 4 q t + 4 q t + |
3 q + 3 q + ----- + --- + - + 4 q t + 2 q t + 4 q t + 4 q t + |
||
3 2 q t t |
3 2 q t t |
||
Line 142: | Line 238: | ||
15 6 17 7 |
15 6 17 7 |
||
q t + q t</nowiki></ |
q t + q t</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[9, 21], 2][q]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 3 -2 8 2 3 4 5 6 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[9, 21], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -4 3 -2 8 2 3 4 5 6 |
|||
-13 + q - -- + q + - + 24 q - 27 q - 6 q + 44 q - 37 q - |
-13 + q - -- + q + - + 24 q - 27 q - 6 q + 44 q - 37 q - |
||
3 q |
3 q |
||
Line 153: | Line 254: | ||
15 16 17 18 19 20 22 23 |
15 16 17 18 19 20 22 23 |
||
13 q - 17 q + 19 q - 3 q - 8 q + 6 q - 2 q + q</nowiki></ |
13 q - 17 q + 19 q - 3 q - 8 q + 6 q - 2 q + q</nowiki></code></td></tr> |
||
</table> }} |
Latest revision as of 16:59, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 9 21's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X1425 X9,12,10,13 X3,11,4,10 X11,3,12,2 X13,1,14,18 X5,15,6,14 X17,7,18,6 X7,17,8,16 X15,9,16,8 |
Gauss code | -1, 4, -3, 1, -6, 7, -8, 9, -2, 3, -4, 2, -5, 6, -9, 8, -7, 5 |
Dowker-Thistlethwaite code | 4 10 14 16 12 2 18 8 6 |
Conway Notation | [31122] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||||
Length is 10, width is 5, Braid index is 5 |
[{11, 6}, {7, 5}, {6, 10}, {1, 7}, {8, 11}, {10, 4}, {5, 2}, {3, 1}, {4, 9}, {2, 8}, {9, 3}] |
[edit Notes on presentations of 9 21]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 21"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X9,12,10,13 X3,11,4,10 X11,3,12,2 X13,1,14,18 X5,15,6,14 X17,7,18,6 X7,17,8,16 X15,9,16,8 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 4, -3, 1, -6, 7, -8, 9, -2, 3, -4, 2, -5, 6, -9, 8, -7, 5 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 10 14 16 12 2 18 8 6 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[31122] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 5, 10, 5 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{11, 6}, {7, 5}, {6, 10}, {1, 7}, {8, 11}, {10, 4}, {5, 2}, {3, 1}, {4, 9}, {2, 8}, {9, 3}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["9 21"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 43, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {K11n129,}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 21"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{K11n129,} |
Vassiliev invariants
V2 and V3: | (3, 6) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 9 21. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|