8 2: Difference between revisions
DrorsRobot (talk | contribs) No edit summary  | 
				No edit summary  | 
				||
| Line 1: | Line 1: | ||
<!--                       WARNING! WARNING! WARNING!  | 
  <!--                       WARNING! WARNING! WARNING!  | 
||
<!-- This page was generated from the splice   | 
  <!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit!  | 
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)  | 
  <!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)  | 
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->  | 
  <!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->  | 
||
<!--   | 
  <!--  -->  | 
||
<!--   | 
  <!--  -->  | 
||
{{Rolfsen Knot Page|  | 
  {{Rolfsen Knot Page|  | 
||
n = 8 |  | 
  n = 8 |  | 
||
| Line 50: | Line 50: | ||
         <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td>  | 
           <td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td>  | 
||
         </tr>  | 
           </tr>  | 
||
         <tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:  | 
           <tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr>  | 
||
         </table>  | 
|||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[8, 2]]</nowiki></pre></td></tr>  | 
  |||
         <table><tr align=left>  | 
|||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[5, 12, 6, 13], X[3, 11, 4, 10], X[11, 3, 12, 2],   | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[8, 2]]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[5, 12, 6, 13], X[3, 11, 4, 10], X[11, 3, 12, 2],   | 
|||
  X[7, 14, 8, 15], X[9, 16, 10, 1], X[13, 6, 14, 7], X[15, 8, 16, 9]]</nowiki></  | 
    X[7, 14, 8, 15], X[9, 16, 10, 1], X[13, 6, 14, 7], X[15, 8, 16, 9]]</nowiki></code></td></tr>  | 
||
</table>  | 
|||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[8, 2]]</nowiki></pre></td></tr>  | 
  |||
         <table><tr align=left>  | 
|||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 4, -3, 1, -2, 7, -5, 8, -6, 3, -4, 2, -7, 5, -8, 6]</nowiki></pre></td></tr>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[8, 2]]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[8, 2]]</nowiki></pre></td></tr>  | 
  |||
<  | 
  <td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>  | 
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 4, -3, 1, -2, 7, -5, 8, -6, 3, -4, 2, -7, 5, -8, 6]</nowiki></code></td></tr>  | 
|||
</table>  | 
|||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 8}</nowiki></pre></td></tr>  | 
  |||
         <table><tr align=left>  | 
|||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[8, 2]]</nowiki></pre></td></tr>  | 
  |||
<  | 
  <td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>  | 
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[8, 2]]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> (#[Knot[8, 2]]&) /@ {  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 10, 12, 14, 16, 2, 6, 8]</nowiki></code></td></tr>  | 
|||
</table>  | 
|||
         <table><tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[8, 2]]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[3, {-1, -1, -1, -1, -1, 2, -1, 2}]</nowiki></code></td></tr>  | 
|||
</table>  | 
|||
         <table><tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, 8}</nowiki></code></td></tr>  | 
|||
</table>  | 
|||
         <table><tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[8, 2]]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr>  | 
|||
</table>  | 
|||
         <table><tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[8, 2]]]</nowiki></code></td></tr>  | 
|||
<tr align=left><td></td><td>[[Image:8_2_ML.gif]]</td></tr><tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>  | 
|||
</table>  | 
|||
         <table><tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[8, 2]]&) /@ {  | 
|||
                 SymmetryType, UnknottingNumber, ThreeGenus,  | 
                   SymmetryType, UnknottingNumber, ThreeGenus,  | 
||
                 BridgeIndex, SuperBridgeIndex, NakanishiIndex  | 
                   BridgeIndex, SuperBridgeIndex, NakanishiIndex  | 
||
                }</nowiki></  | 
                  }</nowiki></code></td></tr>  | 
||
<tr align=left>  | 
|||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 3, 2, {4, 5}, 1}</nowiki></pre></td></tr>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 2, 3, 2, {4, 5}, 1}</nowiki></code></td></tr>  | 
|||
</table>  | 
|||
         <table><tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[8, 2]][t]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>     -3   3    3            2    3  | 
|||
3 - t   + -- - - - 3 t + 3 t  - t  | 
  3 - t   + -- - - - 3 t + 3 t  - t  | 
||
           2   t  | 
             2   t  | 
||
          t</nowiki></  | 
            t</nowiki></code></td></tr>  | 
||
</table>  | 
|||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[8, 2]][z]</nowiki></pre></td></tr>  | 
  |||
         <table><tr align=left>  | 
|||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>       4    6  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>  | 
|||
1 - 3 z  - z</nowiki></pre></td></tr>  | 
  |||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[8, 2]][z]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[8, 2], Knot[11, NonAlternating, 6]}</nowiki></pre></td></tr>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>       4    6  | 
|||
1 - 3 z  - z</nowiki></code></td></tr>  | 
|||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[8, 2]][q]</nowiki></pre></td></tr>  | 
  |||
</table>  | 
|||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>     -8   2    2    3    3    2    2    1  | 
  |||
         <table><tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[8, 2], Knot[11, NonAlternating, 6]}</nowiki></code></td></tr>  | 
|||
</table>  | 
|||
         <table><tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[8, 2]], KnotSignature[Knot[8, 2]]}</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{17, -4}</nowiki></code></td></tr>  | 
|||
</table>  | 
|||
         <table><tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[8, 2]][q]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>     -8   2    2    3    3    2    2    1  | 
|||
1 + q   - -- + -- - -- + -- - -- + -- - -  | 
  1 + q   - -- + -- - -- + -- - -- + -- - -  | 
||
           7    6    5    4    3    2   q  | 
             7    6    5    4    3    2   q  | 
||
          q    q    q    q    q    q</nowiki></  | 
            q    q    q    q    q    q</nowiki></code></td></tr>  | 
||
</table>  | 
|||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>  | 
  |||
         <table><tr align=left>  | 
|||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[8, 2]}</nowiki></pre></td></tr>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
1 + q    - q    - q    - q    + q    + q   + q   + q</nowiki></pre></td></tr>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[8, 2]}</nowiki></code></td></tr>  | 
|||
</table>  | 
|||
         <table><tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[8, 2]][q]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>     -24    -18    -16    -12    -10    -6    -4    -2  | 
|||
1 + q    - q    - q    - q    + q    + q   + q   + q</nowiki></code></td></tr>  | 
|||
</table>  | 
|||
         <table><tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[8, 2]][a, z]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>   2      4    6      2  2      4  2      6  2    2  4      4  4  | 
|||
3 a  - 3 a  + a  + 4 a  z  - 7 a  z  + 3 a  z  + a  z  - 5 a  z  +   | 
  3 a  - 3 a  + a  + 4 a  z  - 7 a  z  + 3 a  z  + a  z  - 5 a  z  +   | 
||
   6  4    4  6  | 
     6  4    4  6  | 
||
  a  z  - a  z</nowiki></  | 
    a  z  - a  z</nowiki></code></td></tr>  | 
||
</table>  | 
|||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[8, 2]][a, z]</nowiki></pre></td></tr>  | 
  |||
         <table><tr align=left>  | 
|||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>    2      4    6    3      5      7      9        2  2       4  2  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[8, 2]][a, z]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>    2      4    6    3      5      7      9        2  2       4  2  | 
|||
-3 a  - 3 a  - a  + a  z + a  z - a  z - a  z + 7 a  z  + 12 a  z  +   | 
  -3 a  - 3 a  - a  + a  z + a  z - a  z - a  z + 7 a  z  + 12 a  z  +   | 
||
| Line 110: | Line 196: | ||
     7  5    2  6      4  6      6  6    3  7    5  7  | 
       7  5    2  6      4  6      6  6    3  7    5  7  | 
||
  2 a  z  + a  z  + 3 a  z  + 2 a  z  + a  z  + a  z</nowiki></  | 
    2 a  z  + a  z  + 3 a  z  + 2 a  z  + a  z  + a  z</nowiki></code></td></tr>  | 
||
</table>  | 
|||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[8, 2]], Vassiliev[3][Knot[8, 2]]}</nowiki></pre></td></tr>  | 
  |||
         <table><tr align=left>  | 
|||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 1}</nowiki></pre></td></tr>  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[8, 2]], Vassiliev[3][Knot[8, 2]]}</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{0, 1}</nowiki></code></td></tr>  | 
|||
</table>  | 
|||
         <table><tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[8, 2]][q, t]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -5   2      1        1        1        1        1        2  | 
|||
q   + -- + ------ + ------ + ------ + ------ + ------ + ------ +   | 
  q   + -- + ------ + ------ + ------ + ------ + ------ + ------ +   | 
||
       3    17  6    15  5    13  5    13  4    11  4    11  3  | 
         3    17  6    15  5    13  5    13  4    11  4    11  3  | 
||
| Line 122: | Line 218: | ||
  ----- + ----- + ----- + ---- + ---- + -- + q t  | 
    ----- + ----- + ----- + ---- + ---- + -- + q t  | 
||
   9  3    9  2    7  2    7      5      3  | 
     9  3    9  2    7  2    7      5      3  | 
||
  q  t    q  t    q  t    q  t   q  t   q</nowiki></  | 
    q  t    q  t    q  t    q  t   q  t   q</nowiki></code></td></tr>  | 
||
</table>  | 
|||
         <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[8, 2], 2][q]</nowiki></pre></td></tr>  | 
  |||
         <table><tr align=left>  | 
|||
<tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>      -22    2     3     4     2     3     6     3     4     7     2  | 
  |||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[8, 2], 2][q]</nowiki></code></td></tr>  | 
|||
<tr align=left>  | 
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td>  | 
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>      -22    2     3     4     2     3     6     3     4     7     2  | 
|||
-1 + q    - --- + --- - --- + --- + --- - --- + --- + --- - --- + --- +   | 
  -1 + q    - --- + --- - --- + --- + --- - --- + --- + --- - --- + --- +   | 
||
             21    19    18    17    16    15    14    13    12    11  | 
               21    19    18    17    16    15    14    13    12    11  | 
||
| Line 132: | Line 233: | ||
  --- - -- + q   + -- - -- + -- - -- - q   + - - q + q  | 
    --- - -- + q   + -- - -- + -- - -- - q   + - - q + q  | 
||
   10    9          7    6    4    3         q  | 
     10    9          7    6    4    3         q  | 
||
  q     q          q    q    q    q</nowiki></  | 
    q     q          q    q    q    q</nowiki></code></td></tr>  | 
||
</table>  }}  | 
|||
Revision as of 16:59, 1 September 2005
| 
 | 
 | 
![]() (KnotPlot image)  | 
 See the full Rolfsen Knot Table. Visit 8 2's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)  | 
Knot presentations
| Planar diagram presentation | X1425 X5,12,6,13 X3,11,4,10 X11,3,12,2 X7,14,8,15 X9,16,10,1 X13,6,14,7 X15,8,16,9 | 
| Gauss code | -1, 4, -3, 1, -2, 7, -5, 8, -6, 3, -4, 2, -7, 5, -8, 6 | 
| Dowker-Thistlethwaite code | 4 10 12 14 16 2 6 8 | 
| Conway Notation | [512] | 
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||
Length is 8, width is 3, Braid index is 3  | 
 
 | 
![]() [{10, 2}, {1, 8}, {9, 3}, {2, 4}, {8, 10}, {3, 5}, {4, 6}, {5, 7}, {6, 9}, {7, 1}]  | 
[edit Notes on presentations of 8 2]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
 | 
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
 | 
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
  | 
In[3]:=
 | 
K = Knot["8 2"];
 | 
In[4]:=
 | 
PD[K]
 | 
KnotTheory::loading: Loading precomputed data in PD4Knots`.
 | 
Out[4]=
 | 
X1425 X5,12,6,13 X3,11,4,10 X11,3,12,2 X7,14,8,15 X9,16,10,1 X13,6,14,7 X15,8,16,9 | 
In[5]:=
 | 
GaussCode[K]
 | 
Out[5]=
 | 
-1, 4, -3, 1, -2, 7, -5, 8, -6, 3, -4, 2, -7, 5, -8, 6 | 
In[6]:=
 | 
DTCode[K]
 | 
Out[6]=
 | 
4 10 12 14 16 2 6 8 | 
(The path below may be different on your system)
In[7]:=
 | 
AppendTo[$Path, "C:/bin/LinKnot/"];
 | 
In[8]:=
 | 
ConwayNotation[K]
 | 
Out[8]=
 | 
[512] | 
In[9]:=
 | 
br = BR[K]
 | 
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
 | 
Out[9]=
 | 
In[10]:=
 | 
{First[br], Crossings[br], BraidIndex[K]}
 | 
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
 | 
KnotTheory::loading: Loading precomputed data in IndianaData`.
 | 
Out[10]=
 | 
{ 3, 8, 3 } | 
In[11]:=
 | 
Show[BraidPlot[br]]
 | 
Out[11]=
 | 
-Graphics- | 
In[12]:=
 | 
Show[DrawMorseLink[K]]
 | 
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
 | 
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
 | 
 
 | 
Out[12]=
 | 
-Graphics- | 
In[13]:=
 | 
ap = ArcPresentation[K]
 | 
Out[13]=
 | 
ArcPresentation[{10, 2}, {1, 8}, {9, 3}, {2, 4}, {8, 10}, {3, 5}, {4, 6}, {5, 7}, {6, 9}, {7, 1}] | 
In[14]:=
 | 
Draw[ap]
 | 
 
 | 
Out[14]=
 | 
-Graphics- | 
Three dimensional invariants
  | 
Four dimensional invariants
  | 
Polynomial invariants
A1 Invariants.
| Weight | Invariant | 
|---|---|
| 1 | |
| 2 | |
| 3 | |
| 4 | |
| 5 | |
| 6 | 
A2 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0 | |
| 1,1 | |
| 2,0 | |
| 3,0 | 
A3 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1,0 | |
| 1,0,0 | |
| 1,0,1 | 
A4 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1,0,0 | |
| 1,0,0,0 | 
B2 Invariants.
| Weight | Invariant | 
|---|---|
| 0,1 | |
| 1,0 | 
D4 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0,0,0 | 
G2 Invariants.
| Weight | Invariant | 
|---|---|
| 1,0 | 
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
 | 
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
 | 
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
  | 
In[3]:=
 | 
K = Knot["8 2"];
 | 
In[4]:=
 | 
Alexander[K][t]
 | 
KnotTheory::loading: Loading precomputed data in PD4Knots`.
 | 
Out[4]=
 | 
In[5]:=
 | 
Conway[K][z]
 | 
Out[5]=
 | 
In[6]:=
 | 
Alexander[K, 2][t]
 | 
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
 | 
Out[6]=
 | 
In[7]:=
 | 
{KnotDet[K], KnotSignature[K]}
 | 
Out[7]=
 | 
{ 17, -4 } | 
In[8]:=
 | 
Jones[K][q]
 | 
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
 | 
Out[8]=
 | 
In[9]:=
 | 
HOMFLYPT[K][a, z]
 | 
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
 | 
Out[9]=
 | 
In[10]:=
 | 
Kauffman[K][a, z]
 | 
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
 | 
Out[10]=
 | 
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11n6,}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
 | 
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
 | 
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
  | 
In[3]:=
 | 
K = Knot["8 2"];
 | 
In[4]:=
 | 
{A = Alexander[K][t], J = Jones[K][q]}
 | 
KnotTheory::loading: Loading precomputed data in PD4Knots`.
 | 
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
 | 
Out[4]=
 | 
{ , } | 
In[5]:=
 | 
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
 | 
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
 | 
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
 | 
Out[5]=
 | 
{K11n6,} | 
In[6]:=
 | 
DeleteCases[
  Select[
    AllKnots[],
    (J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
    ],
  K
  ]
 | 
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
 | 
Out[6]=
 | 
{} | 
Vassiliev invariants
| V2 and V3: | (0, 1) | 
| V2,1 through V6,9: | 
  | 
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -4 is the signature of 8 2. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. | 
  | 
| Integral Khovanov Homology
 (db, data source)  | 
 | 
The Coloured Jones Polynomials
| 2 | |
| 3 | |
| 4 | |
| 5 | |
| 6 | |
| 7 | 
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages
 See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top.  | 
  | 






