10 41: Difference between revisions
(Resetting knot page to basic template.) |
No edit summary |
||
| Line 1: | Line 1: | ||
<!-- --> |
|||
{{Template:Basic Knot Invariants|name=10_41}} |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
<span id="top"></span> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{| align=left |
|||
|- valign=top |
|||
|[[Image:{{PAGENAME}}.gif]] |
|||
|{{Rolfsen Knot Site Links|n=10|k=41|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-2,8,-9,7,-5,3,-4,2,-7,10,-6,9,-8,6,-10,5/goTop.html}} |
|||
|{{:{{PAGENAME}} Quick Notes}} |
|||
|} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
{{Vassiliev Invariants}} |
|||
===[[Khovanov Homology]]=== |
|||
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
|||
<center><table border=1> |
|||
<tr align=center> |
|||
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
|||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
|||
<tr><td>j</td><td> </td><td>\</td></tr> |
|||
</table></td> |
|||
<td width=6.66667%>-6</td ><td width=6.66667%>-5</td ><td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=13.3333%>χ</td></tr> |
|||
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
|||
<tr align=center><td>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>-2</td></tr> |
|||
<tr align=center><td>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>4</td><td bgcolor=yellow>1</td><td> </td><td>3</td></tr> |
|||
<tr align=center><td>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>4</td><td bgcolor=yellow>2</td><td> </td><td> </td><td>-2</td></tr> |
|||
<tr align=center><td>-1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>7</td><td bgcolor=yellow>4</td><td> </td><td> </td><td> </td><td>3</td></tr> |
|||
<tr align=center><td>-3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>6</td><td bgcolor=yellow>5</td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>-5</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>5</td><td bgcolor=yellow>6</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>-7</td><td> </td><td> </td><td> </td><td bgcolor=yellow>4</td><td bgcolor=yellow>6</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>-9</td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-3</td></tr> |
|||
<tr align=center><td>-11</td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>4</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>3</td></tr> |
|||
<tr align=center><td>-13</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-2</td></tr> |
|||
<tr align=center><td>-15</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
</table></center> |
|||
{{Computer Talk Header}} |
|||
<table> |
|||
<tr valign=top> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[10, 41]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>10</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 41]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[5, 12, 6, 13], X[3, 11, 4, 10], X[11, 3, 12, 2], |
|||
X[9, 20, 10, 1], X[15, 19, 16, 18], X[13, 8, 14, 9], X[17, 6, 18, 7], |
|||
X[7, 16, 8, 17], X[19, 15, 20, 14]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 41]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 4, -3, 1, -2, 8, -9, 7, -5, 3, -4, 2, -7, 10, -6, 9, -8, |
|||
6, -10, 5]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[10, 41]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {1, -2, 1, -2, -2, 3, -2, -4, 3, -4}]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 41]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 7 17 2 3 |
|||
-21 + t - -- + -- + 17 t - 7 t + t |
|||
2 t |
|||
t</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 41]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
|||
1 - 2 z - z + z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 41], Knot[11, NonAlternating, 5]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 41]], KnotSignature[Knot[10, 41]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{71, -2}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[10, 41]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -7 3 6 9 11 12 11 2 3 |
|||
-8 + q - -- + -- - -- + -- - -- + -- + 6 q - 3 q + q |
|||
6 5 4 3 2 q |
|||
q q q q q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 41], Knot[10, 94]}</nowiki></pre></td></tr> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 41]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -22 -18 2 2 -10 2 2 2 2 2 4 |
|||
1 + q - q + --- - --- + q - -- + -- - -- + -- - q + 2 q - |
|||
16 14 8 6 4 2 |
|||
q q q q q q |
|||
6 10 |
|||
q + q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 41]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 |
|||
-2 2 4 6 z 3 7 2 3 z |
|||
-1 - a - 2 a - 2 a - a - - - 2 a z - 2 a z + a z + 7 z + ---- + |
|||
a 2 |
|||
a |
|||
3 |
|||
2 2 4 2 6 2 8 2 7 z 3 3 3 |
|||
9 a z + 10 a z + 4 a z - a z + ---- + 13 a z + 10 a z + |
|||
a |
|||
4 |
|||
5 3 7 3 4 3 z 2 4 4 4 6 4 |
|||
a z - 3 a z - 4 z - ---- - 8 a z - 14 a z - 6 a z + |
|||
2 |
|||
a |
|||
5 6 |
|||
8 4 9 z 5 3 5 5 5 7 5 6 z |
|||
a z - ---- - 20 a z - 18 a z - 4 a z + 3 a z - 5 z + -- - |
|||
a 2 |
|||
a |
|||
7 |
|||
2 6 4 6 6 6 3 z 7 3 7 5 7 |
|||
7 a z + 4 a z + 5 a z + ---- + 6 a z + 8 a z + 5 a z + |
|||
a |
|||
8 2 8 4 8 9 3 9 |
|||
3 z + 6 a z + 3 a z + a z + a z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 41]], Vassiliev[3][Knot[10, 41]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 2}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 41]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5 7 1 2 1 4 2 5 4 |
|||
-- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- + |
|||
3 q 15 6 13 5 11 5 11 4 9 4 9 3 7 3 |
|||
q q t q t q t q t q t q t q t |
|||
6 5 6 6 4 t 2 3 2 |
|||
----- + ----- + ---- + ---- + --- + 4 q t + 2 q t + 4 q t + |
|||
7 2 5 2 5 3 q |
|||
q t q t q t q t |
|||
3 3 5 3 7 4 |
|||
q t + 2 q t + q t</nowiki></pre></td></tr> |
|||
</table> |
|||
Revision as of 20:48, 27 August 2005
|
|
|
|
Visit 10 41's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 41's page at Knotilus! Visit 10 41's page at the original Knot Atlas! |
10 41 Quick Notes |
Knot presentations
| Planar diagram presentation | X1425 X5,12,6,13 X3,11,4,10 X11,3,12,2 X9,20,10,1 X15,19,16,18 X13,8,14,9 X17,6,18,7 X7,16,8,17 X19,15,20,14 |
| Gauss code | -1, 4, -3, 1, -2, 8, -9, 7, -5, 3, -4, 2, -7, 10, -6, 9, -8, 6, -10, 5 |
| Dowker-Thistlethwaite code | 4 10 12 16 20 2 8 18 6 14 |
| Conway Notation | [221212] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^3-7 t^2+17 t-21+17 t^{-1} -7 t^{-2} + t^{-3} } |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^6-z^4-2 z^2+1} |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
| Determinant and Signature | { 71, -2 } |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^3-3 q^2+6 q-8+11 q^{-1} -12 q^{-2} +11 q^{-3} -9 q^{-4} +6 q^{-5} -3 q^{-6} + q^{-7} } |
| HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^2 a^6+a^6-2 z^4 a^4-4 z^2 a^4-2 a^4+z^6 a^2+3 z^4 a^2+4 z^2 a^2+2 a^2-2 z^4-4 z^2-1+z^2 a^{-2} + a^{-2} } |
| Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^3 z^9+a z^9+3 a^4 z^8+6 a^2 z^8+3 z^8+5 a^5 z^7+8 a^3 z^7+6 a z^7+3 z^7 a^{-1} +5 a^6 z^6+4 a^4 z^6-7 a^2 z^6+z^6 a^{-2} -5 z^6+3 a^7 z^5-4 a^5 z^5-18 a^3 z^5-20 a z^5-9 z^5 a^{-1} +a^8 z^4-6 a^6 z^4-14 a^4 z^4-8 a^2 z^4-3 z^4 a^{-2} -4 z^4-3 a^7 z^3+a^5 z^3+10 a^3 z^3+13 a z^3+7 z^3 a^{-1} -a^8 z^2+4 a^6 z^2+10 a^4 z^2+9 a^2 z^2+3 z^2 a^{-2} +7 z^2+a^7 z-2 a^3 z-2 a z-z a^{-1} -a^6-2 a^4-2 a^2- a^{-2} -1} |
| The A2 invariant | |
| The G2 invariant |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | |
| 2 | |
| 3 | |
| 4 | |
| 5 |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | |
| 1,1 | |
| 2,0 |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | |
| 1,0,0 |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | |
| 1,0 |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{114}-2 q^{112}+4 q^{110}-6 q^{108}+5 q^{106}-4 q^{104}-2 q^{102}+12 q^{100}-21 q^{98}+30 q^{96}-32 q^{94}+22 q^{92}-3 q^{90}-23 q^{88}+55 q^{86}-74 q^{84}+80 q^{82}-61 q^{80}+20 q^{78}+31 q^{76}-80 q^{74}+112 q^{72}-114 q^{70}+80 q^{68}-22 q^{66}-44 q^{64}+90 q^{62}-97 q^{60}+69 q^{58}-13 q^{56}-47 q^{54}+74 q^{52}-64 q^{50}+9 q^{48}+67 q^{46}-125 q^{44}+139 q^{42}-91 q^{40}+101 q^{36}-178 q^{34}+196 q^{32}-153 q^{30}+59 q^{28}+49 q^{26}-132 q^{24}+169 q^{22}-140 q^{20}+70 q^{18}+11 q^{16}-77 q^{14}+96 q^{12}-70 q^{10}+13 q^8+57 q^6-97 q^4+94 q^2-42-35 q^{-2} +106 q^{-4} -142 q^{-6} +126 q^{-8} -69 q^{-10} -11 q^{-12} +83 q^{-14} -120 q^{-16} +119 q^{-18} -77 q^{-20} +22 q^{-22} +24 q^{-24} -54 q^{-26} +57 q^{-28} -43 q^{-30} +24 q^{-32} -2 q^{-34} -9 q^{-36} +12 q^{-38} -10 q^{-40} +6 q^{-42} -2 q^{-44} + q^{-46} } |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 41"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^3-7 t^2+17 t-21+17 t^{-1} -7 t^{-2} + t^{-3} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^6-z^4-2 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 71, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^3-3 q^2+6 q-8+11 q^{-1} -12 q^{-2} +11 q^{-3} -9 q^{-4} +6 q^{-5} -3 q^{-6} + q^{-7} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^2 a^6+a^6-2 z^4 a^4-4 z^2 a^4-2 a^4+z^6 a^2+3 z^4 a^2+4 z^2 a^2+2 a^2-2 z^4-4 z^2-1+z^2 a^{-2} + a^{-2} } |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^3 z^9+a z^9+3 a^4 z^8+6 a^2 z^8+3 z^8+5 a^5 z^7+8 a^3 z^7+6 a z^7+3 z^7 a^{-1} +5 a^6 z^6+4 a^4 z^6-7 a^2 z^6+z^6 a^{-2} -5 z^6+3 a^7 z^5-4 a^5 z^5-18 a^3 z^5-20 a z^5-9 z^5 a^{-1} +a^8 z^4-6 a^6 z^4-14 a^4 z^4-8 a^2 z^4-3 z^4 a^{-2} -4 z^4-3 a^7 z^3+a^5 z^3+10 a^3 z^3+13 a z^3+7 z^3 a^{-1} -a^8 z^2+4 a^6 z^2+10 a^4 z^2+9 a^2 z^2+3 z^2 a^{-2} +7 z^2+a^7 z-2 a^3 z-2 a z-z a^{-1} -a^6-2 a^4-2 a^2- a^{-2} -1} |
Vassiliev invariants
| V2 and V3: | (-2, 2) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} -2 is the signature of 10 41. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
-6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | χ | |||||||||
| 7 | 1 | 1 | |||||||||||||||||||
| 5 | 2 | -2 | |||||||||||||||||||
| 3 | 4 | 1 | 3 | ||||||||||||||||||
| 1 | 4 | 2 | -2 | ||||||||||||||||||
| -1 | 7 | 4 | 3 | ||||||||||||||||||
| -3 | 6 | 5 | -1 | ||||||||||||||||||
| -5 | 5 | 6 | -1 | ||||||||||||||||||
| -7 | 4 | 6 | 2 | ||||||||||||||||||
| -9 | 2 | 5 | -3 | ||||||||||||||||||
| -11 | 1 | 4 | 3 | ||||||||||||||||||
| -13 | 2 | -2 | |||||||||||||||||||
| -15 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{Include}(\textrm{ColouredJonesM.mhtml})}
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[10, 41]] |
Out[2]= | 10 |
In[3]:= | PD[Knot[10, 41]] |
Out[3]= | PD[X[1, 4, 2, 5], X[5, 12, 6, 13], X[3, 11, 4, 10], X[11, 3, 12, 2],X[9, 20, 10, 1], X[15, 19, 16, 18], X[13, 8, 14, 9], X[17, 6, 18, 7],X[7, 16, 8, 17], X[19, 15, 20, 14]] |
In[4]:= | GaussCode[Knot[10, 41]] |
Out[4]= | GaussCode[-1, 4, -3, 1, -2, 8, -9, 7, -5, 3, -4, 2, -7, 10, -6, 9, -8, 6, -10, 5] |
In[5]:= | BR[Knot[10, 41]] |
Out[5]= | BR[5, {1, -2, 1, -2, -2, 3, -2, -4, 3, -4}] |
In[6]:= | alex = Alexander[Knot[10, 41]][t] |
Out[6]= | -3 7 17 2 3 |
In[7]:= | Conway[Knot[10, 41]][z] |
Out[7]= | 2 4 6 1 - 2 z - z + z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[10, 41], Knot[11, NonAlternating, 5]} |
In[9]:= | {KnotDet[Knot[10, 41]], KnotSignature[Knot[10, 41]]} |
Out[9]= | {71, -2} |
In[10]:= | J=Jones[Knot[10, 41]][q] |
Out[10]= | -7 3 6 9 11 12 11 2 3 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[10, 41], Knot[10, 94]} |
In[12]:= | A2Invariant[Knot[10, 41]][q] |
Out[12]= | -22 -18 2 2 -10 2 2 2 2 2 4 |
In[13]:= | Kauffman[Knot[10, 41]][a, z] |
Out[13]= | 2-2 2 4 6 z 3 7 2 3 z |
In[14]:= | {Vassiliev[2][Knot[10, 41]], Vassiliev[3][Knot[10, 41]]} |
Out[14]= | {0, 2} |
In[15]:= | Kh[Knot[10, 41]][q, t] |
Out[15]= | 5 7 1 2 1 4 2 5 4 |


