10 7: Difference between revisions
(Resetting knot page to basic template.) |
No edit summary |
||
| Line 1: | Line 1: | ||
<!-- --> |
|||
{{Template:Basic Knot Invariants|name=10_7}} |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
<span id="top"></span> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{| align=left |
|||
|- valign=top |
|||
|[[Image:{{PAGENAME}}.gif]] |
|||
|{{Rolfsen Knot Site Links|n=10|k=7|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-2,6,-7,10,-8,9,-5,3,-4,2,-9,8,-10,7,-6,5/goTop.html}} |
|||
|{{:{{PAGENAME}} Quick Notes}} |
|||
|} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
{{Vassiliev Invariants}} |
|||
===[[Khovanov Homology]]=== |
|||
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
|||
<center><table border=1> |
|||
<tr align=center> |
|||
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
|||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
|||
<tr><td>j</td><td> </td><td>\</td></tr> |
|||
</table></td> |
|||
<td width=6.66667%>-8</td ><td width=6.66667%>-7</td ><td width=6.66667%>-6</td ><td width=6.66667%>-5</td ><td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=13.3333%>χ</td></tr> |
|||
<tr align=center><td>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
|||
<tr align=center><td>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>-1</td></tr> |
|||
<tr align=center><td>-1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>1</td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>-3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>2</td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>-5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>4</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>-7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>-9</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>4</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>-11</td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>-13</td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-2</td></tr> |
|||
<tr align=center><td>-15</td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>-17</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>-19</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
</table></center> |
|||
{{Computer Talk Header}} |
|||
<table> |
|||
<tr valign=top> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[10, 7]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>10</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 7]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[5, 14, 6, 15], X[3, 13, 4, 12], X[13, 3, 14, 2], |
|||
X[11, 20, 12, 1], X[19, 6, 20, 7], X[7, 18, 8, 19], X[9, 16, 10, 17], |
|||
X[15, 10, 16, 11], X[17, 8, 18, 9]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 7]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 4, -3, 1, -2, 6, -7, 10, -8, 9, -5, 3, -4, 2, -9, 8, -10, |
|||
7, -6, 5]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[10, 7]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {-1, -1, -2, 1, -2, -3, 2, -3, -3, 4, -3, 4}]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 7]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 11 2 |
|||
-15 - -- + -- + 11 t - 3 t |
|||
2 t |
|||
t</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 7]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 |
|||
1 - z - 3 z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 7], Knot[11, Alternating, 59], Knot[11, NonAlternating, 3]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 7]], KnotSignature[Knot[10, 7]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{43, -2}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[10, 7]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -9 2 3 5 6 7 7 5 4 |
|||
-2 + q - -- + -- - -- + -- - -- + -- - -- + - + q |
|||
8 7 6 5 4 3 2 q |
|||
q q q q q q q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 7]}</nowiki></pre></td></tr> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 7]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -28 -22 2 -18 -14 -12 -8 -6 -4 2 4 |
|||
q + q - --- - q - q + q + q + q - q + -- + q |
|||
20 2 |
|||
q q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 7]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4 6 8 5 7 9 2 2 2 |
|||
1 + a + 2 a + a - 2 a z - 5 a z - 3 a z - 2 z - 2 a z - |
|||
4 2 6 2 8 2 10 2 3 3 3 5 3 |
|||
4 a z - 10 a z - 3 a z + 3 a z - 3 a z + a z + 6 a z + |
|||
7 3 9 3 4 2 4 4 4 6 4 8 4 |
|||
10 a z + 8 a z + z - a z + 8 a z + 20 a z + 6 a z - |
|||
10 4 5 3 5 5 5 7 5 9 5 2 6 |
|||
4 a z + 2 a z - 2 a z - 2 a z - 6 a z - 8 a z + 2 a z - |
|||
4 6 6 6 8 6 10 6 3 7 5 7 7 7 |
|||
5 a z - 15 a z - 7 a z + a z + 2 a z - a z - a z + |
|||
9 7 4 8 6 8 8 8 5 9 7 9 |
|||
2 a z + 2 a z + 4 a z + 2 a z + a z + a z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 7]], Vassiliev[3][Knot[10, 7]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 3}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 7]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>2 3 1 1 1 2 1 3 2 |
|||
-- + - + ------ + ------ + ------ + ------ + ------ + ------ + ------ + |
|||
3 q 19 8 17 7 15 7 15 6 13 6 13 5 11 5 |
|||
q q t q t q t q t q t q t q t |
|||
3 3 4 3 3 4 2 3 t |
|||
------ + ----- + ----- + ----- + ----- + ----- + ---- + ---- + - + |
|||
11 4 9 4 9 3 7 3 7 2 5 2 5 3 q |
|||
q t q t q t q t q t q t q t q t |
|||
3 2 |
|||
q t + q t</nowiki></pre></td></tr> |
|||
</table> |
|||
Revision as of 20:49, 27 August 2005
|
|
|
|
Visit 10 7's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 7's page at Knotilus! Visit 10 7's page at the original Knot Atlas! |
10 7 Quick Notes |
Knot presentations
| Planar diagram presentation | X1425 X5,14,6,15 X3,13,4,12 X13,3,14,2 X11,20,12,1 X19,6,20,7 X7,18,8,19 X9,16,10,17 X15,10,16,11 X17,8,18,9 |
| Gauss code | -1, 4, -3, 1, -2, 6, -7, 10, -8, 9, -5, 3, -4, 2, -9, 8, -10, 7, -6, 5 |
| Dowker-Thistlethwaite code | 4 12 14 18 16 20 2 10 8 6 |
| Conway Notation | [5212] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ -3 t^2+11 t-15+11 t^{-1} -3 t^{-2} }[/math] |
| Conway polynomial | [math]\displaystyle{ -3 z^4-z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 43, -2 } |
| Jones polynomial | [math]\displaystyle{ q-2+4 q^{-1} -5 q^{-2} +7 q^{-3} -7 q^{-4} +6 q^{-5} -5 q^{-6} +3 q^{-7} -2 q^{-8} + q^{-9} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ z^2 a^8+a^8-z^4 a^6-2 z^2 a^6-2 a^6-z^4 a^4+a^4-z^4 a^2-z^2 a^2+z^2+1 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ z^6 a^{10}-4 z^4 a^{10}+3 z^2 a^{10}+2 z^7 a^9-8 z^5 a^9+8 z^3 a^9-3 z a^9+2 z^8 a^8-7 z^6 a^8+6 z^4 a^8-3 z^2 a^8+a^8+z^9 a^7-z^7 a^7-6 z^5 a^7+10 z^3 a^7-5 z a^7+4 z^8 a^6-15 z^6 a^6+20 z^4 a^6-10 z^2 a^6+2 a^6+z^9 a^5-z^7 a^5-2 z^5 a^5+6 z^3 a^5-2 z a^5+2 z^8 a^4-5 z^6 a^4+8 z^4 a^4-4 z^2 a^4+a^4+2 z^7 a^3-2 z^5 a^3+z^3 a^3+2 z^6 a^2-z^4 a^2-2 z^2 a^2+2 z^5 a-3 z^3 a+z^4-2 z^2+1 }[/math] |
| The A2 invariant | [math]\displaystyle{ q^{28}+q^{22}-2 q^{20}-q^{18}-q^{14}+q^{12}+q^8+q^6-q^4+2 q^2+ q^{-4} }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{142}-q^{140}+2 q^{138}-3 q^{136}+2 q^{134}-3 q^{132}-q^{130}+6 q^{128}-10 q^{126}+12 q^{124}-12 q^{122}+8 q^{120}+2 q^{118}-12 q^{116}+22 q^{114}-24 q^{112}+21 q^{110}-8 q^{108}-7 q^{106}+20 q^{104}-23 q^{102}+22 q^{100}-9 q^{98}-4 q^{96}+14 q^{94}-16 q^{92}+8 q^{90}+2 q^{88}-14 q^{86}+19 q^{84}-16 q^{82}+q^{80}+10 q^{78}-23 q^{76}+27 q^{74}-25 q^{72}+11 q^{70}+2 q^{68}-19 q^{66}+29 q^{64}-30 q^{62}+21 q^{60}-6 q^{58}-8 q^{56}+18 q^{54}-20 q^{52}+15 q^{50}-3 q^{48}-6 q^{46}+11 q^{44}-8 q^{42}+q^{40}+10 q^{38}-14 q^{36}+14 q^{34}-7 q^{32}-2 q^{30}+9 q^{28}-14 q^{26}+16 q^{24}-13 q^{22}+9 q^{20}-2 q^{18}-5 q^{16}+10 q^{14}-12 q^{12}+14 q^{10}-10 q^8+6 q^6-6 q^2+9-8 q^{-2} +7 q^{-4} -3 q^{-6} + q^{-8} +2 q^{-10} -3 q^{-12} +3 q^{-14} - q^{-16} + q^{-18} }[/math] |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | [math]\displaystyle{ q^{19}-q^{17}+q^{15}-2 q^{13}+q^{11}-q^9+2 q^5-q^3+2 q- q^{-1} + q^{-3} }[/math] |
| 2 | [math]\displaystyle{ q^{54}-q^{52}-q^{50}+3 q^{48}-2 q^{46}-4 q^{44}+5 q^{42}+q^{40}-6 q^{38}+4 q^{36}+4 q^{34}-6 q^{32}+q^{30}+5 q^{28}-4 q^{26}-q^{24}+3 q^{22}-4 q^{18}-q^{16}+6 q^{14}-4 q^{12}-3 q^{10}+7 q^8-2 q^6-3 q^4+5 q^2-1- q^{-2} +3 q^{-4} - q^{-6} - q^{-8} + q^{-10} }[/math] |
| 3 | [math]\displaystyle{ q^{105}-q^{103}-q^{101}+q^{99}+2 q^{97}-2 q^{95}-5 q^{93}+2 q^{91}+8 q^{89}-10 q^{85}-3 q^{83}+12 q^{81}+9 q^{79}-11 q^{77}-13 q^{75}+4 q^{73}+16 q^{71}+q^{69}-15 q^{67}-8 q^{65}+12 q^{63}+14 q^{61}-7 q^{59}-17 q^{57}+3 q^{55}+17 q^{53}-16 q^{49}-3 q^{47}+13 q^{45}+4 q^{43}-9 q^{41}-7 q^{39}+9 q^{37}+8 q^{35}-13 q^{31}-4 q^{29}+13 q^{27}+9 q^{25}-12 q^{23}-13 q^{21}+7 q^{19}+13 q^{17}-2 q^{15}-11 q^{13}-q^{11}+6 q^9+4 q^7-q^5-q^3-2 q+ q^{-1} +3 q^{-3} +2 q^{-5} -2 q^{-7} -3 q^{-9} + q^{-11} +3 q^{-13} - q^{-17} - q^{-19} + q^{-21} }[/math] |
| 4 | [math]\displaystyle{ q^{172}-q^{170}-q^{168}+q^{166}+2 q^{162}-4 q^{160}-3 q^{158}+4 q^{156}+3 q^{154}+8 q^{152}-8 q^{150}-13 q^{148}+2 q^{146}+8 q^{144}+23 q^{142}-4 q^{140}-26 q^{138}-16 q^{136}-2 q^{134}+39 q^{132}+20 q^{130}-15 q^{128}-29 q^{126}-32 q^{124}+24 q^{122}+34 q^{120}+21 q^{118}-5 q^{116}-47 q^{114}-18 q^{112}+3 q^{110}+36 q^{108}+44 q^{106}-16 q^{104}-42 q^{102}-48 q^{100}+13 q^{98}+72 q^{96}+31 q^{94}-28 q^{92}-73 q^{90}-22 q^{88}+62 q^{86}+55 q^{84}-4 q^{82}-66 q^{80}-36 q^{78}+38 q^{76}+47 q^{74}+7 q^{72}-43 q^{70}-32 q^{68}+17 q^{66}+36 q^{64}+12 q^{62}-22 q^{60}-30 q^{58}-10 q^{56}+29 q^{54}+30 q^{52}+12 q^{50}-34 q^{48}-53 q^{46}+8 q^{44}+46 q^{42}+58 q^{40}-11 q^{38}-82 q^{36}-38 q^{34}+27 q^{32}+85 q^{30}+34 q^{28}-63 q^{26}-62 q^{24}-20 q^{22}+62 q^{20}+60 q^{18}-14 q^{16}-42 q^{14}-46 q^{12}+18 q^{10}+45 q^8+15 q^6-6 q^4-38 q^2-8+18 q^{-2} +15 q^{-4} +11 q^{-6} -18 q^{-8} -10 q^{-10} + q^{-12} +5 q^{-14} +12 q^{-16} -4 q^{-18} -4 q^{-20} -3 q^{-22} - q^{-24} +5 q^{-26} - q^{-32} - q^{-34} + q^{-36} }[/math] |
| 5 | [math]\displaystyle{ q^{255}-q^{253}-q^{251}+q^{249}-2 q^{241}-2 q^{239}+4 q^{237}+6 q^{235}+q^{233}-4 q^{231}-9 q^{229}-8 q^{227}+4 q^{225}+19 q^{223}+17 q^{221}-3 q^{219}-23 q^{217}-33 q^{215}-14 q^{213}+25 q^{211}+52 q^{209}+35 q^{207}-14 q^{205}-59 q^{203}-65 q^{201}-15 q^{199}+54 q^{197}+88 q^{195}+53 q^{193}-24 q^{191}-85 q^{189}-85 q^{187}-22 q^{185}+52 q^{183}+90 q^{181}+65 q^{179}-56 q^{175}-80 q^{173}-64 q^{171}-14 q^{169}+60 q^{167}+104 q^{165}+94 q^{163}+16 q^{161}-107 q^{159}-172 q^{157}-106 q^{155}+66 q^{153}+210 q^{151}+200 q^{149}+16 q^{147}-212 q^{145}-274 q^{143}-104 q^{141}+171 q^{139}+310 q^{137}+184 q^{135}-104 q^{133}-311 q^{131}-244 q^{129}+40 q^{127}+281 q^{125}+263 q^{123}+17 q^{121}-230 q^{119}-259 q^{117}-54 q^{115}+179 q^{113}+228 q^{111}+69 q^{109}-131 q^{107}-184 q^{105}-70 q^{103}+92 q^{101}+152 q^{99}+64 q^{97}-71 q^{95}-116 q^{93}-63 q^{91}+38 q^{89}+108 q^{87}+84 q^{85}-18 q^{83}-98 q^{81}-113 q^{79}-46 q^{77}+93 q^{75}+169 q^{73}+110 q^{71}-60 q^{69}-216 q^{67}-205 q^{65}+242 q^{61}+300 q^{59}+89 q^{57}-230 q^{55}-371 q^{53}-187 q^{51}+171 q^{49}+397 q^{47}+276 q^{45}-85 q^{43}-369 q^{41}-326 q^{39}-9 q^{37}+294 q^{35}+329 q^{33}+89 q^{31}-199 q^{29}-294 q^{27}-132 q^{25}+115 q^{23}+225 q^{21}+143 q^{19}-40 q^{17}-163 q^{15}-131 q^{13}+4 q^{11}+105 q^9+103 q^7+23 q^5-63 q^3-80 q-30 q^{-1} +37 q^{-3} +58 q^{-5} +30 q^{-7} -16 q^{-9} -40 q^{-11} -27 q^{-13} +3 q^{-15} +27 q^{-17} +24 q^{-19} + q^{-21} -13 q^{-23} -16 q^{-25} -7 q^{-27} +5 q^{-29} +12 q^{-31} +5 q^{-33} -2 q^{-35} -3 q^{-37} -5 q^{-39} - q^{-41} +3 q^{-43} +2 q^{-45} - q^{-51} - q^{-53} + q^{-55} }[/math] |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | [math]\displaystyle{ q^{28}+q^{22}-2 q^{20}-q^{18}-q^{14}+q^{12}+q^8+q^6-q^4+2 q^2+ q^{-4} }[/math] |
| 1,1 | [math]\displaystyle{ q^{76}-2 q^{74}+4 q^{72}-8 q^{70}+17 q^{68}-26 q^{66}+36 q^{64}-54 q^{62}+67 q^{60}-78 q^{58}+82 q^{56}-80 q^{54}+68 q^{52}-38 q^{50}+10 q^{48}+26 q^{46}-65 q^{44}+96 q^{42}-122 q^{40}+132 q^{38}-135 q^{36}+134 q^{34}-112 q^{32}+92 q^{30}-66 q^{28}+36 q^{26}-14 q^{24}-10 q^{22}+22 q^{20}-36 q^{18}+40 q^{16}-38 q^{14}+39 q^{12}-42 q^{10}+42 q^8-36 q^6+38 q^4-32 q^2+30-20 q^{-2} +15 q^{-4} -10 q^{-6} +6 q^{-8} -2 q^{-10} + q^{-12} }[/math] |
| 2,0 | [math]\displaystyle{ q^{72}+q^{64}-q^{62}-4 q^{60}-q^{58}+2 q^{56}+q^{54}-3 q^{52}+5 q^{48}+4 q^{46}-3 q^{44}-2 q^{42}+3 q^{40}+q^{38}-3 q^{36}-2 q^{34}+3 q^{32}+q^{30}-2 q^{28}+q^{26}-q^{24}-3 q^{22}+2 q^{20}+q^{18}-4 q^{16}-2 q^{14}+5 q^{12}+2 q^{10}-5 q^8-q^6+7 q^4+2 q^2-2+ q^{-2} +2 q^{-4} - q^{-8} + q^{-12} }[/math] |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | [math]\displaystyle{ q^{60}-q^{58}+q^{54}-3 q^{52}+q^{48}-3 q^{46}+4 q^{44}+4 q^{42}-3 q^{40}+5 q^{38}+3 q^{36}-6 q^{34}-q^{32}+q^{30}-5 q^{28}-2 q^{26}+q^{24}+q^{22}-2 q^{20}-q^{18}+6 q^{16}-3 q^{14}-2 q^{12}+7 q^{10}-q^8-4 q^6+5 q^4+q^2-2+3 q^{-2} + q^{-4} - q^{-6} + q^{-8} }[/math] |
| 1,0,0 | [math]\displaystyle{ q^{37}+q^{33}+q^{29}-2 q^{27}-q^{25}-2 q^{23}-q^{19}+q^{17}+q^{15}+q^{11}+q^7-q^5+2 q^3+ q^{-1} + q^{-5} }[/math] |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | [math]\displaystyle{ q^{60}-q^{58}+2 q^{56}-3 q^{54}+5 q^{52}-6 q^{50}+7 q^{48}-7 q^{46}+6 q^{44}-6 q^{42}+3 q^{40}-q^{38}-3 q^{36}+6 q^{34}-9 q^{32}+11 q^{30}-13 q^{28}+14 q^{26}-13 q^{24}+11 q^{22}-8 q^{20}+5 q^{18}-2 q^{16}-q^{14}+4 q^{12}-5 q^{10}+7 q^8-6 q^6+7 q^4-5 q^2+4-3 q^{-2} +3 q^{-4} - q^{-6} + q^{-8} }[/math] |
| 1,0 | [math]\displaystyle{ q^{98}-q^{94}-q^{92}+q^{90}+2 q^{88}-q^{86}-4 q^{84}-q^{82}+4 q^{80}+3 q^{78}-4 q^{76}-6 q^{74}+2 q^{72}+8 q^{70}+4 q^{68}-6 q^{66}-5 q^{64}+4 q^{62}+8 q^{60}+q^{58}-6 q^{56}-3 q^{54}+3 q^{52}+2 q^{50}-3 q^{48}-4 q^{46}+q^{44}+3 q^{42}-2 q^{40}-5 q^{38}+5 q^{34}+q^{32}-5 q^{30}-3 q^{28}+5 q^{26}+5 q^{24}-3 q^{22}-6 q^{20}+q^{18}+7 q^{16}+4 q^{14}-4 q^{12}-5 q^{10}+6 q^6+3 q^4-2 q^2-3+3 q^{-4} +2 q^{-6} - q^{-8} - q^{-10} + q^{-14} }[/math] |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | [math]\displaystyle{ q^{142}-q^{140}+2 q^{138}-3 q^{136}+2 q^{134}-3 q^{132}-q^{130}+6 q^{128}-10 q^{126}+12 q^{124}-12 q^{122}+8 q^{120}+2 q^{118}-12 q^{116}+22 q^{114}-24 q^{112}+21 q^{110}-8 q^{108}-7 q^{106}+20 q^{104}-23 q^{102}+22 q^{100}-9 q^{98}-4 q^{96}+14 q^{94}-16 q^{92}+8 q^{90}+2 q^{88}-14 q^{86}+19 q^{84}-16 q^{82}+q^{80}+10 q^{78}-23 q^{76}+27 q^{74}-25 q^{72}+11 q^{70}+2 q^{68}-19 q^{66}+29 q^{64}-30 q^{62}+21 q^{60}-6 q^{58}-8 q^{56}+18 q^{54}-20 q^{52}+15 q^{50}-3 q^{48}-6 q^{46}+11 q^{44}-8 q^{42}+q^{40}+10 q^{38}-14 q^{36}+14 q^{34}-7 q^{32}-2 q^{30}+9 q^{28}-14 q^{26}+16 q^{24}-13 q^{22}+9 q^{20}-2 q^{18}-5 q^{16}+10 q^{14}-12 q^{12}+14 q^{10}-10 q^8+6 q^6-6 q^2+9-8 q^{-2} +7 q^{-4} -3 q^{-6} + q^{-8} +2 q^{-10} -3 q^{-12} +3 q^{-14} - q^{-16} + q^{-18} }[/math] |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 7"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ -3 t^2+11 t-15+11 t^{-1} -3 t^{-2} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ -3 z^4-z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 43, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ q-2+4 q^{-1} -5 q^{-2} +7 q^{-3} -7 q^{-4} +6 q^{-5} -5 q^{-6} +3 q^{-7} -2 q^{-8} + q^{-9} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ z^2 a^8+a^8-z^4 a^6-2 z^2 a^6-2 a^6-z^4 a^4+a^4-z^4 a^2-z^2 a^2+z^2+1 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ z^6 a^{10}-4 z^4 a^{10}+3 z^2 a^{10}+2 z^7 a^9-8 z^5 a^9+8 z^3 a^9-3 z a^9+2 z^8 a^8-7 z^6 a^8+6 z^4 a^8-3 z^2 a^8+a^8+z^9 a^7-z^7 a^7-6 z^5 a^7+10 z^3 a^7-5 z a^7+4 z^8 a^6-15 z^6 a^6+20 z^4 a^6-10 z^2 a^6+2 a^6+z^9 a^5-z^7 a^5-2 z^5 a^5+6 z^3 a^5-2 z a^5+2 z^8 a^4-5 z^6 a^4+8 z^4 a^4-4 z^2 a^4+a^4+2 z^7 a^3-2 z^5 a^3+z^3 a^3+2 z^6 a^2-z^4 a^2-2 z^2 a^2+2 z^5 a-3 z^3 a+z^4-2 z^2+1 }[/math] |
Vassiliev invariants
| V2 and V3: | (-1, 3) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s+1 }[/math], where [math]\displaystyle{ s= }[/math]-2 is the signature of 10 7. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
|
-8 | -7 | -6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | χ | |||||||||
| 3 | 1 | 1 | |||||||||||||||||||
| 1 | 1 | -1 | |||||||||||||||||||
| -1 | 3 | 1 | 2 | ||||||||||||||||||
| -3 | 3 | 2 | -1 | ||||||||||||||||||
| -5 | 4 | 2 | 2 | ||||||||||||||||||
| -7 | 3 | 3 | 0 | ||||||||||||||||||
| -9 | 3 | 4 | -1 | ||||||||||||||||||
| -11 | 2 | 3 | 1 | ||||||||||||||||||
| -13 | 1 | 3 | -2 | ||||||||||||||||||
| -15 | 1 | 2 | 1 | ||||||||||||||||||
| -17 | 1 | -1 | |||||||||||||||||||
| -19 | 1 | 1 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
[math]\displaystyle{ \textrm{Include}(\textrm{ColouredJonesM.mhtml}) }[/math]
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[10, 7]] |
Out[2]= | 10 |
In[3]:= | PD[Knot[10, 7]] |
Out[3]= | PD[X[1, 4, 2, 5], X[5, 14, 6, 15], X[3, 13, 4, 12], X[13, 3, 14, 2],X[11, 20, 12, 1], X[19, 6, 20, 7], X[7, 18, 8, 19], X[9, 16, 10, 17],X[15, 10, 16, 11], X[17, 8, 18, 9]] |
In[4]:= | GaussCode[Knot[10, 7]] |
Out[4]= | GaussCode[-1, 4, -3, 1, -2, 6, -7, 10, -8, 9, -5, 3, -4, 2, -9, 8, -10, 7, -6, 5] |
In[5]:= | BR[Knot[10, 7]] |
Out[5]= | BR[5, {-1, -1, -2, 1, -2, -3, 2, -3, -3, 4, -3, 4}] |
In[6]:= | alex = Alexander[Knot[10, 7]][t] |
Out[6]= | 3 11 2 |
In[7]:= | Conway[Knot[10, 7]][z] |
Out[7]= | 2 4 1 - z - 3 z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[10, 7], Knot[11, Alternating, 59], Knot[11, NonAlternating, 3]} |
In[9]:= | {KnotDet[Knot[10, 7]], KnotSignature[Knot[10, 7]]} |
Out[9]= | {43, -2} |
In[10]:= | J=Jones[Knot[10, 7]][q] |
Out[10]= | -9 2 3 5 6 7 7 5 4 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[10, 7]} |
In[12]:= | A2Invariant[Knot[10, 7]][q] |
Out[12]= | -28 -22 2 -18 -14 -12 -8 -6 -4 2 4 |
In[13]:= | Kauffman[Knot[10, 7]][a, z] |
Out[13]= | 4 6 8 5 7 9 2 2 2 |
In[14]:= | {Vassiliev[2][Knot[10, 7]], Vassiliev[3][Knot[10, 7]]} |
Out[14]= | {0, 3} |
In[15]:= | Kh[Knot[10, 7]][q, t] |
Out[15]= | 2 3 1 1 1 2 1 3 2 |


