K11a215: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| Line 16: | Line 16: | ||
k = 215 | |
k = 215 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-6,2,-1,3,-10,4,-11,5,-9,6,-2,7,-4,8,-5,9,-3,10,-8,11,-7/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-6,2,-1,3,-10,4,-11,5,-9,6,-2,7,-4,8,-5,9,-3,10,-8,11,-7/goTop.html | |
||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
braid_table = <table cellspacing=0 cellpadding=0 border=0 style="white-space: pre"> |
||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]]</td></tr> |
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]]</td></tr> |
||
| Line 58: | Line 58: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September 3, 2005, 2:11:43)...</td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[11, Alternating, 215]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[11, Alternating, 215]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr> |
||
Latest revision as of 01:54, 3 September 2005
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X4251 X12,4,13,3 X18,6,19,5 X14,7,15,8 X16,10,17,9 X2,12,3,11 X22,13,1,14 X20,16,21,15 X10,18,11,17 X6,20,7,19 X8,21,9,22 |
| Gauss code | 1, -6, 2, -1, 3, -10, 4, -11, 5, -9, 6, -2, 7, -4, 8, -5, 9, -3, 10, -8, 11, -7 |
| Dowker-Thistlethwaite code | 4 12 18 14 16 2 22 20 10 6 8 |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ t^4-6 t^3+17 t^2-27 t+31-27 t^{-1} +17 t^{-2} -6 t^{-3} + t^{-4} }[/math] |
| Conway polynomial | [math]\displaystyle{ z^8+2 z^6+z^4+3 z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 133, 4 } |
| Jones polynomial | [math]\displaystyle{ q^{10}-4 q^9+8 q^8-14 q^7+19 q^6-21 q^5+21 q^4-18 q^3+14 q^2-8 q+4- q^{-1} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ z^8 a^{-4} -z^6 a^{-2} +5 z^6 a^{-4} -2 z^6 a^{-6} -3 z^4 a^{-2} +10 z^4 a^{-4} -7 z^4 a^{-6} +z^4 a^{-8} -2 z^2 a^{-2} +10 z^2 a^{-4} -7 z^2 a^{-6} +2 z^2 a^{-8} +3 a^{-4} -2 a^{-6} }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ 2 z^{10} a^{-4} +2 z^{10} a^{-6} +5 z^9 a^{-3} +13 z^9 a^{-5} +8 z^9 a^{-7} +4 z^8 a^{-2} +10 z^8 a^{-4} +19 z^8 a^{-6} +13 z^8 a^{-8} +z^7 a^{-1} -12 z^7 a^{-3} -27 z^7 a^{-5} -2 z^7 a^{-7} +12 z^7 a^{-9} -14 z^6 a^{-2} -49 z^6 a^{-4} -64 z^6 a^{-6} -21 z^6 a^{-8} +8 z^6 a^{-10} -3 z^5 a^{-1} +z^5 a^{-3} -3 z^5 a^{-5} -26 z^5 a^{-7} -15 z^5 a^{-9} +4 z^5 a^{-11} +16 z^4 a^{-2} +54 z^4 a^{-4} +56 z^4 a^{-6} +11 z^4 a^{-8} -6 z^4 a^{-10} +z^4 a^{-12} +3 z^3 a^{-1} +10 z^3 a^{-3} +22 z^3 a^{-5} +23 z^3 a^{-7} +6 z^3 a^{-9} -2 z^3 a^{-11} -6 z^2 a^{-2} -21 z^2 a^{-4} -18 z^2 a^{-6} -2 z^2 a^{-8} +z^2 a^{-10} -z a^{-1} -4 z a^{-3} -8 z a^{-5} -5 z a^{-7} +3 a^{-4} +2 a^{-6} }[/math] |
| The A2 invariant | [math]\displaystyle{ -q^2+2-2 q^{-2} +2 q^{-4} +2 q^{-6} -2 q^{-8} +5 q^{-10} -4 q^{-12} +3 q^{-14} - q^{-18} +3 q^{-20} -4 q^{-22} + q^{-24} - q^{-26} - q^{-28} + q^{-30} }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{12}-3 q^{10}+9 q^8-19 q^6+28 q^4-33 q^2+17+26 q^{-2} -91 q^{-4} +165 q^{-6} -205 q^{-8} +166 q^{-10} -35 q^{-12} -176 q^{-14} +395 q^{-16} -518 q^{-18} +476 q^{-20} -232 q^{-22} -146 q^{-24} +522 q^{-26} -735 q^{-28} +685 q^{-30} -371 q^{-32} -82 q^{-34} +483 q^{-36} -670 q^{-38} +562 q^{-40} -208 q^{-42} -215 q^{-44} +535 q^{-46} -584 q^{-48} +345 q^{-50} +76 q^{-52} -513 q^{-54} +774 q^{-56} -745 q^{-58} +424 q^{-60} +89 q^{-62} -602 q^{-64} +937 q^{-66} -952 q^{-68} +640 q^{-70} -115 q^{-72} -433 q^{-74} +789 q^{-76} -837 q^{-78} +567 q^{-80} -103 q^{-82} -338 q^{-84} +580 q^{-86} -525 q^{-88} +214 q^{-90} +182 q^{-92} -488 q^{-94} +556 q^{-96} -372 q^{-98} +23 q^{-100} +335 q^{-102} -564 q^{-104} +587 q^{-106} -407 q^{-108} +116 q^{-110} +170 q^{-112} -372 q^{-114} +426 q^{-116} -361 q^{-118} +225 q^{-120} -58 q^{-122} -76 q^{-124} +164 q^{-126} -192 q^{-128} +168 q^{-130} -118 q^{-132} +59 q^{-134} -5 q^{-136} -35 q^{-138} +55 q^{-140} -60 q^{-142} +48 q^{-144} -29 q^{-146} +14 q^{-148} + q^{-150} -8 q^{-152} +10 q^{-154} -10 q^{-156} +6 q^{-158} -3 q^{-160} + q^{-162} }[/math] |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a215"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ t^4-6 t^3+17 t^2-27 t+31-27 t^{-1} +17 t^{-2} -6 t^{-3} + t^{-4} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ z^8+2 z^6+z^4+3 z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 133, 4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ q^{10}-4 q^9+8 q^8-14 q^7+19 q^6-21 q^5+21 q^4-18 q^3+14 q^2-8 q+4- q^{-1} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ z^8 a^{-4} -z^6 a^{-2} +5 z^6 a^{-4} -2 z^6 a^{-6} -3 z^4 a^{-2} +10 z^4 a^{-4} -7 z^4 a^{-6} +z^4 a^{-8} -2 z^2 a^{-2} +10 z^2 a^{-4} -7 z^2 a^{-6} +2 z^2 a^{-8} +3 a^{-4} -2 a^{-6} }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ 2 z^{10} a^{-4} +2 z^{10} a^{-6} +5 z^9 a^{-3} +13 z^9 a^{-5} +8 z^9 a^{-7} +4 z^8 a^{-2} +10 z^8 a^{-4} +19 z^8 a^{-6} +13 z^8 a^{-8} +z^7 a^{-1} -12 z^7 a^{-3} -27 z^7 a^{-5} -2 z^7 a^{-7} +12 z^7 a^{-9} -14 z^6 a^{-2} -49 z^6 a^{-4} -64 z^6 a^{-6} -21 z^6 a^{-8} +8 z^6 a^{-10} -3 z^5 a^{-1} +z^5 a^{-3} -3 z^5 a^{-5} -26 z^5 a^{-7} -15 z^5 a^{-9} +4 z^5 a^{-11} +16 z^4 a^{-2} +54 z^4 a^{-4} +56 z^4 a^{-6} +11 z^4 a^{-8} -6 z^4 a^{-10} +z^4 a^{-12} +3 z^3 a^{-1} +10 z^3 a^{-3} +22 z^3 a^{-5} +23 z^3 a^{-7} +6 z^3 a^{-9} -2 z^3 a^{-11} -6 z^2 a^{-2} -21 z^2 a^{-4} -18 z^2 a^{-6} -2 z^2 a^{-8} +z^2 a^{-10} -z a^{-1} -4 z a^{-3} -8 z a^{-5} -5 z a^{-7} +3 a^{-4} +2 a^{-6} }[/math] |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a215"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ t^4-6 t^3+17 t^2-27 t+31-27 t^{-1} +17 t^{-2} -6 t^{-3} + t^{-4} }[/math], [math]\displaystyle{ q^{10}-4 q^9+8 q^8-14 q^7+19 q^6-21 q^5+21 q^4-18 q^3+14 q^2-8 q+4- q^{-1} }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (3, 5) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]4 is the signature of K11a215. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



