K11a216
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X4251 X12,4,13,3 X18,6,19,5 X14,7,15,8 X20,10,21,9 X2,12,3,11 X22,13,1,14 X8,15,9,16 X10,18,11,17 X6,20,7,19 X16,21,17,22 |
| Gauss code | 1, -6, 2, -1, 3, -10, 4, -8, 5, -9, 6, -2, 7, -4, 8, -11, 9, -3, 10, -5, 11, -7 |
| Dowker-Thistlethwaite code | 4 12 18 14 20 2 22 8 10 6 16 |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ -t^4+6 t^3-17 t^2+31 t-37+31 t^{-1} -17 t^{-2} +6 t^{-3} - t^{-4} }[/math] |
| Conway polynomial | [math]\displaystyle{ -z^8-2 z^6-z^4+z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 147, 2 } |
| Jones polynomial | [math]\displaystyle{ -q^8+4 q^7-9 q^6+15 q^5-21 q^4+24 q^3-23 q^2+21 q-15+9 q^{-1} -4 q^{-2} + q^{-3} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ -z^8 a^{-2} -5 z^6 a^{-2} +2 z^6 a^{-4} +z^6-10 z^4 a^{-2} +7 z^4 a^{-4} -z^4 a^{-6} +3 z^4-8 z^2 a^{-2} +8 z^2 a^{-4} -2 z^2 a^{-6} +3 z^2- a^{-2} +2 a^{-4} - a^{-6} +1 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ 2 z^{10} a^{-2} +2 z^{10} a^{-4} +6 z^9 a^{-1} +13 z^9 a^{-3} +7 z^9 a^{-5} +15 z^8 a^{-2} +18 z^8 a^{-4} +10 z^8 a^{-6} +7 z^8+4 a z^7-4 z^7 a^{-1} -16 z^7 a^{-3} +8 z^7 a^{-7} +a^2 z^6-44 z^6 a^{-2} -47 z^6 a^{-4} -15 z^6 a^{-6} +4 z^6 a^{-8} -15 z^6-9 a z^5-13 z^5 a^{-1} -9 z^5 a^{-3} -18 z^5 a^{-5} -12 z^5 a^{-7} +z^5 a^{-9} -2 a^2 z^4+38 z^4 a^{-2} +41 z^4 a^{-4} +10 z^4 a^{-6} -5 z^4 a^{-8} +10 z^4+6 a z^3+12 z^3 a^{-1} +16 z^3 a^{-3} +18 z^3 a^{-5} +7 z^3 a^{-7} -z^3 a^{-9} +a^2 z^2-15 z^2 a^{-2} -15 z^2 a^{-4} -4 z^2 a^{-6} +z^2 a^{-8} -4 z^2-a z-3 z a^{-1} -4 z a^{-3} -4 z a^{-5} -2 z a^{-7} + a^{-2} +2 a^{-4} + a^{-6} +1 }[/math] |
| The A2 invariant | [math]\displaystyle{ q^8-2 q^6+3 q^4-2 q^2-1+4 q^{-2} -4 q^{-4} +6 q^{-6} -2 q^{-8} + q^{-10} + q^{-12} -4 q^{-14} +4 q^{-16} -2 q^{-18} + q^{-22} - q^{-24} }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{46}-3 q^{44}+8 q^{42}-16 q^{40}+22 q^{38}-25 q^{36}+14 q^{34}+18 q^{32}-66 q^{30}+129 q^{28}-176 q^{26}+173 q^{24}-98 q^{22}-67 q^{20}+290 q^{18}-494 q^{16}+587 q^{14}-481 q^{12}+158 q^{10}+304 q^8-746 q^6+998 q^4-914 q^2+492+127 q^{-2} -723 q^{-4} +1027 q^{-6} -919 q^{-8} +449 q^{-10} +188 q^{-12} -688 q^{-14} +841 q^{-16} -570 q^{-18} -12 q^{-20} +643 q^{-22} -1038 q^{-24} +998 q^{-26} -517 q^{-28} -239 q^{-30} +989 q^{-32} -1425 q^{-34} +1393 q^{-36} -879 q^{-38} +60 q^{-40} +769 q^{-42} -1323 q^{-44} +1389 q^{-46} -970 q^{-48} +253 q^{-50} +481 q^{-52} -920 q^{-54} +915 q^{-56} -499 q^{-58} -114 q^{-60} +636 q^{-62} -836 q^{-64} +614 q^{-66} -87 q^{-68} -512 q^{-70} +930 q^{-72} -980 q^{-74} +679 q^{-76} -154 q^{-78} -393 q^{-80} +751 q^{-82} -847 q^{-84} +677 q^{-86} -341 q^{-88} -17 q^{-90} +288 q^{-92} -413 q^{-94} +398 q^{-96} -287 q^{-98} +143 q^{-100} -9 q^{-102} -82 q^{-104} +116 q^{-106} -114 q^{-108} +83 q^{-110} -45 q^{-112} +16 q^{-114} +7 q^{-116} -16 q^{-118} +16 q^{-120} -13 q^{-122} +7 q^{-124} -3 q^{-126} + q^{-128} }[/math] |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a216"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ -t^4+6 t^3-17 t^2+31 t-37+31 t^{-1} -17 t^{-2} +6 t^{-3} - t^{-4} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ -z^8-2 z^6-z^4+z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 147, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ -q^8+4 q^7-9 q^6+15 q^5-21 q^4+24 q^3-23 q^2+21 q-15+9 q^{-1} -4 q^{-2} + q^{-3} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ -z^8 a^{-2} -5 z^6 a^{-2} +2 z^6 a^{-4} +z^6-10 z^4 a^{-2} +7 z^4 a^{-4} -z^4 a^{-6} +3 z^4-8 z^2 a^{-2} +8 z^2 a^{-4} -2 z^2 a^{-6} +3 z^2- a^{-2} +2 a^{-4} - a^{-6} +1 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ 2 z^{10} a^{-2} +2 z^{10} a^{-4} +6 z^9 a^{-1} +13 z^9 a^{-3} +7 z^9 a^{-5} +15 z^8 a^{-2} +18 z^8 a^{-4} +10 z^8 a^{-6} +7 z^8+4 a z^7-4 z^7 a^{-1} -16 z^7 a^{-3} +8 z^7 a^{-7} +a^2 z^6-44 z^6 a^{-2} -47 z^6 a^{-4} -15 z^6 a^{-6} +4 z^6 a^{-8} -15 z^6-9 a z^5-13 z^5 a^{-1} -9 z^5 a^{-3} -18 z^5 a^{-5} -12 z^5 a^{-7} +z^5 a^{-9} -2 a^2 z^4+38 z^4 a^{-2} +41 z^4 a^{-4} +10 z^4 a^{-6} -5 z^4 a^{-8} +10 z^4+6 a z^3+12 z^3 a^{-1} +16 z^3 a^{-3} +18 z^3 a^{-5} +7 z^3 a^{-7} -z^3 a^{-9} +a^2 z^2-15 z^2 a^{-2} -15 z^2 a^{-4} -4 z^2 a^{-6} +z^2 a^{-8} -4 z^2-a z-3 z a^{-1} -4 z a^{-3} -4 z a^{-5} -2 z a^{-7} + a^{-2} +2 a^{-4} + a^{-6} +1 }[/math] |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11a196, K11a286,}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {K11a196,}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a216"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ -t^4+6 t^3-17 t^2+31 t-37+31 t^{-1} -17 t^{-2} +6 t^{-3} - t^{-4} }[/math], [math]\displaystyle{ -q^8+4 q^7-9 q^6+15 q^5-21 q^4+24 q^3-23 q^2+21 q-15+9 q^{-1} -4 q^{-2} + q^{-3} }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11a196, K11a286,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{K11a196,} |
Vassiliev invariants
| V2 and V3: | (1, 2) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]2 is the signature of K11a216. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



