The Multivariable Alexander Polynomial: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
 
No edit summary
Line 4: Line 4:


<!--$$?MultivariableAlexander$$-->
<!--$$?MultivariableAlexander$$-->
<!--Robot Land, no human edits to "END"-->
{{HelpLine|
n = 2 |
in = <nowiki>MultivariableAlexander</nowiki> |
out= <nowiki>MultivariableAlexander[L][t] returns the multivariable alexander polynomial of a link L as a function of the variable t[1], t[2], ..., t[c], where c is the number of components of L.</nowiki>}}
<!--END-->
<!--END-->


Line 10: Line 15:


<!--$$Select[AllLinks[], (MultivariableAlexander[#][t] == 0) &]$$-->
<!--$$Select[AllLinks[], (MultivariableAlexander[#][t] == 0) &]$$-->
<!--Robot Land, no human edits to "END"-->
{{InOut|
n = 3 |
in = <nowiki>Select[AllLinks[], (MultivariableAlexander[#][t] == 0) &]</nowiki> |
out= <nowiki>{Link[9, NonAlternating, 27], Link[10, NonAlternating, 32],
Link[10, NonAlternating, 36], Link[10, NonAlternating, 107],
Link[11, NonAlternating, 244], Link[11, NonAlternating, 247],
Link[11, NonAlternating, 334], Link[11, NonAlternating, 381],
Link[11, NonAlternating, 396], Link[11, NonAlternating, 404],
Link[11, NonAlternating, 406]}</nowiki>}}
<!--END-->
<!--END-->

Revision as of 14:27, 5 September 2005


(For In[1] see Setup)

In[2]:= ?MultivariableAlexander
MultivariableAlexander[L][t] returns the multivariable alexander polynomial of a link L as a function of the variable t[1], t[2], ..., t[c], where c is the number of components of L.

There are 11 links with up to 11 crossings whose multivariable Alexander polynomial is . Here they are:


In[3]:= Select[AllLinks[], (MultivariableAlexander[#][t] == 0) &]
Out[3]= {Link[9, NonAlternating, 27], Link[10, NonAlternating, 32], Link[10, NonAlternating, 36], Link[10, NonAlternating, 107], Link[11, NonAlternating, 244], Link[11, NonAlternating, 247], Link[11, NonAlternating, 334], Link[11, NonAlternating, 381], Link[11, NonAlternating, 396], Link[11, NonAlternating, 404], Link[11, NonAlternating, 406]}